
AL-TR-1 992-0155
AD-~A260 830 Reproduced From

Best Available Copy

DEVELOPMENT OF A FLIGHT""-INSTRUMENT PACKAGE

A
R Dan D. Fulgham

John L. Orr
M Brian Mikiten

S DTICT ELEC*TET 71S FEB 17 19•

R MacAulay Brown, Incorporated
3915 Germany Lane E

0 Dayton, OH- 45431

SG Southeastern Center for Electrical Engineering Education
1101 Massachusetts Avenue

St. Cloud, FL 34769

LA CREW SYSTEMS DIRECTORATE
2504 D Drive, Suite 1

B Brooks Air Force Base, rX 78235-5104

0
R December 1992

A
T Final Technical Report for Period 16 November 1987 - 30 April 1991

0
R Approved for public release; distribution is unlimited.Y

93-02959
98 a 2 16 045 ii3mllill I

AIR FORCE MATERIEL COMMAND
, _ _ BROOKS AIR FORCE BASE, TEXAS

SD'ISCLAIMER NOT ICE

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

December 1992 Final - 16 November 1987 - 30 April 1991

C - F33615-87-C-0534
(Task 0002)

Development ot a Flight Instrument Package C - F33615-87-D-0609
(Task 0014)

PE - 61101F, 62202F
Dan D. Fulgham PR - 7930
John L. Orr TA - 14
Brian Mikiten WUJ - 8E

MacAulay Brown, Inc. Southeastern Center fop Electrical
3915 Germany Lane Engineering Education (SCEEE) SwRI Project No. 12-2301
Dayton, OH 45431 1101 Massachusetts Avenue Subcontract No. 1107-02-

St. Cloud, FL 34769 08SWA

Armstrong Laboratory
Crew Systems Directorate
2504 D Drive, Suite 1
Brooks Air Force Base, TX 78235-5104 AL-TR-1992-0155

Armstrong Laboratory Technical Monitor: Dr. Kent K. Gillingham, (210) 536-3521

Approved for public release; distribution is unlimited.

Subcontractor (Southwest Research Institute) describes the hardware and software comprising the Flight
Instrument Package (FIP), a collection of transducers and electronic components that measure primary flight
motion and position parameters and generate digital data representing those parameters. Pitch angle, bank
angle, altitude, vertical velocity, airspeed, heading, and angle of attack are the main quantities digitized and relayed
to a data port for processing into various displays of aircraft state. The FIP developed as part of this task was used
in a Beech Queen Air aircraft to drive the Acoustic Orientation Instrument, which provides the pilot with an auditory
display of aircraft bank, airspeed, vertical velocity, and other parameters as necessary.

Acoustic orientation 400
Aural displays
_Flight instrumentation

Unclassified Unclassified Unclassified UL

1i

NOTICES

This technical report is published as received and has not been edited by the
technical editing staff of the Armstrong Laboratory.

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely Government-related procurement, the United
States Government incurs no responsibility or any obligation whatsoever. The fact that
the Government may have formulated or in any way supplied the said drawings,
specifications, or other data, is not to be regarded by implication, or otherwise in any
manner construed, as licensing the holder, or any other person or corporation; or as
conveying any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

The Office of Public Affairs has reviewed this report, and it is releasable to the
National Technical Information Service, where it will be available to the general public,
including foreign nationals.

This report has been reviewed and is approved for publication.

KENT K GILUNGHAM, M.D., Ph.D. RONALD C. HILL, Lt Col, USAF, BSC
Project Scientist Chief, Flight Motion Effects Branch

Accesion For

NTIS CRAM,
RICHARD L MILLER, Ph.D. DTIC TAB
Chief, Crew Technology Division Unannounced 0

Justification.

By

Dist,-ibution I

Availability Codes

Avail and I or
Dist Special

DTTC QUALTW T" 7TE N3

TABLE OF CONTENTS

Introduction

Hardware

Sensor Overview
B. Airspeed
C. Altitude
D. Vertical Velocity
E. Angle of Attack
F. Vertical Gyro

Bank Angle
Pitch Angle

G. Three-axis Magnetometer
Axis Data
Heading Deviation

FIP Electronics

A. Signal Processing Board
B. Power Supply Board

AOI Power Requirements
. F FIP Power Requirements

SC. Fuses
D. Battery Package
E. Display Board

Data Processing Computer System

A. SBC-2 68010 board
B. VME/750
C. MACH-2 FORTH/68000NME
D. MIZAR 8605 A/D

System Software

A. Flight Pack Input
B. Flight Pack Processing
C. Flight Pack Output
D. Downloading Instructions
D. RAM vs. ROM

Results

List of Figures:

Figure 1 - System Overview

Figure 2 - Sensors

Figure 3 - Signal Conditioning Electronics

Figure 4 - Battery Placement

Appendices:

Appendix A - Airspeed to PSI Lookup Table

Appendix B - Altitude to PSI Code and Equation

Appendix C - Source Code

Appendix D - Vertical Gyroscope
Humphrey Inc.
Calibration data
Mounting material

Appendix E - Three-Axis Magnetometer Data Sheets

Appendix F - Signal Conditioning Board
PCB Schematics
PCB layouts
Parts Data Sheets

Appendix G - Power Supply Board
PCB Schematics
PCB layouts
Parts Data Sheets

Appendix H - Display Board Schematics
PCB Schematics
PCB layouts
Parts Data Sheets

Appendix I - Mizar 8605 Analog Input Board Manual

* Appendix J - Battery Package Data

Appendix K - List of Parts

* Appendix L - VME Specialists SBC-2 68010 Board Manual

Appendix M - VME Specialists VME-750 Board Manual

Appendix N - Mach II Forth Manual

0

0

INTRODUCTION

The Flight Instrument Package (FIP) is designed to translate inflight
motion to digital and analog signals that can be used by the Acoustic
Orientation Instrument or AOL. Information on the AOI can be found in the report
titled Inflight Evaluation of an Acoustic Orientation Instrument Final Report,
March 1990. The sensor and data processing package provides real-time data
corresponding to aircraft speed, altitude, vertical velocity, bank angle, pitch
angle, heading, and angle of attack. Both digital RS-232 data and processed
analog signals are available to the user. A Beech Queen Air served as the test
aircraft for the development of the system. During testing of the individual
transducers, the pilots were asked to accomplish a series of repetitive
maneuvers that tested specific attributes of each device. The data taken during
these test flights was correlated with verbal reports and the accuracy of the
transducer was determined during post processing of the flight data.

HARDWARE

The design of the FIP includes four major subsections (Figure 1: a)
Overview). The first component, sensors, allows the system to ,.,.dnitor
movement, air pressures, and angular changes while in flight. The second,
sensor electronics, provides the necessary translation, amplification, and
filtration to the raw sensor signals. The third, a computer system, provides the
necessary interface and data processing capabilities required to both analyze
the sensor data and provide meaningful output to the AOL. Finally, a power
source and convertor provide power to both the FIP and the AOL.

The FIP contains several transducers which translate physical
parameters to electrical to be processed by the microcomputer system.
Because of the sensors utilized in this design, in most cases, the response rate
and accuracy of the FIP are far greater than that of the aircraft instruments.

A total of nine sensor parameters are used by the computer system to
characterize flight performance. These are:

Heading (X, Y, and Z)
Airspeed
Altitude
Vertical Velocity (calculated)
Bank Angle
Pitch Angle
Heading Deviation
Altitude Deviation
Angle of Attack

In several cases, the signals for the sensors are used in combination
with each other to calculate a parameter. Two examples, heading and vertical
velocity, are discussed. Raw heading is first calculated using the X, Y, Z
magnetometer signals and a simple transformation algorithm. It is then

J9~66 1 C14

GJDmI4OS H1idOd 0
0

/M[9L99/Q[Q99

0

a~vuj ~ 0

0 u

<0
LUE)PD

U 2 00

cn LU

00

2<
25 <

a)

0 ~ Q2 <
I-.- .4 (

< (,.
0a

translated to an upright condition by subtracting the roll and pitch angles
shown by the gyroscope. This re-orients the gyro to a position that is horizontal
to the Earth's axis or the null position. Vertical velocity is derived using a
change in altitude over time. Altitude data is provided using a pressure
transducer and the time from a real time clock.

Sensor Overview

FIP sensors provide a conversion of physical parameters to an electrical
signal that can then be interpreted by the FIP computer system. (Figure 2:
Sensors). The FIP uses a total of five sensors in order to provide this
capability. Each is listed and described below.

Airspeed is a function of the differential pitot and static pressures in the
aircraft's pitot-static system. The co-pilot's pitot-static system in the Beech
Queen Air has been modified to allow monitoring by the FIR In the case of
airspeed, the pitot side of the system is led to the high pressure end of the
transducer. The low end of the transducer is connected to the static side of the
aircraft and the resulting differential pressure provides an accurate
measurement of airspeed over varied temperature and humidity conditions. If
the flight pack is flown above 12,500 feet or at temperature ranges beyond
standard commercial ranges, software compensation and additional hardware
capable of monitoring outside temperature and humidity will be required.

The transducer provides a 10 mv per PSI output and is specified with a
maximum sensitivity of 5 PSI. The electronics in the FIP provide a 50 k load, 5
volt negative offset, and a gain of 1000 to give a total output voltage of ±5 volts.

During the initial testing of the system, airspeed was calculated using the
formula:

P = 1/2 p * (V)A2 (1 + (1/4)[(VA2)/(aOA2)])

where:

P = differential pressure reading
p = Air density at sea level
V = Airspeed
aO = Speed of sound at sea level
V = velocity.

Differences in humidity, initial air temperature, and relative angle of the sensors
to the plane cause anomalies in the data which are compensated for by using a
look-up table mapped to the PSI values (Appendix A).

0

S:DINOdJ1023l
SNINOUIIGNOO 1VNSIS

< <
o 2 LU

-O 0

0 ~L.
*0
a1)0

<
__

UQU

as Cf0) I

<i U) (D O

LU < < z-
Cý LU -

0 Altitude is derived using a 15 PSI pressure transducer. The transducer
provides 100 mv full scale sensitivity using the 10 volt reference included in the
FIP circuitry. This signal decreases as the aircraft increases altitude because air
pressure decreases as altitude increases. The static readings from the
transducer are multiplied by a gain of 100 to provide full scale output. The signal
is offset by a negative 5 volts to provide better resolution to the A/D board.

The minimum theoretical altitude of 15 PSI occurs below sea level and
produces an A/D count of 4096. Since this is rarely possible in normal flight, the
range of 0-15 PSI was deemed acceptable for the sensor range. A maximum
altitude of 13,000 feet above mean sea level was used in this application. A
reading of 2.39 PSI at 13,000 feet yields a count of 653, the maximum altitude to
be attained in the Beech Queen Air.

A lookup table is utilized because of the complex equations used to
determine altitude. Appendix B shows the altitude vs. PSI data used in the FIP.
During the course of development, several equations fit to these data resulted in
unacceptable accuracy. The lookup table is implemented in the code and shown
in Appendix C.

During the final testing of the system, an initial altitude offset was entered
while downloading the code to the FIP as the airplane was on the field before
takeoff. This helped to null the effect of temperature differences found in the
summer at the various altitudes. (see System Software below)

Vertical Vebcity

Vertical velocity is a calculated value based on a change in altitude over
time. The system uses a time base of 15 seconds for the calculation. The current
value for altitude at time zero is subtracted from the altitude value at time zero plus
15 seconds. Provisions are made to alter the time period used for more rapid
updates. This signal is not directly derived with a transducer, therefore, the
signals are not directly related to A/D counts. In order to allow for both climbing
and diving, the A/D counts above 2048 are used to show a climb and the
numbers below 2048 represent a dive. An A/D count of zero represents the
maximum dive value and the A/D count of 4096 represents the maximum climb.
Because these number, are set during downloading, the computer source code
(Appendix C) should be consulted for the current settings.

Angle of Attack

This signal was originally provided from a synchro based angle of attack
(AOA) vane mounted on the side of the aircraft. Initial circuitry consisted of a
synchro to linear convertor, power convertor, and a set of buffer amplifiers.
Incompatibilities in the system prevented the units from working properly and

the AOA system was not implemented using the synchro outputs. Instead, the
AOA vane was modified by removing a single non-working synchro and
replacing it with a potentiometer. While the system remains untested, it is
expected to provide accurate results with only minor circuit modifications.

Vertical Gyroscope

A vertical gyroscope from Humphrey, Inc. (Appendix D) was used to
determine bank and pitch angle. The calibration data (Appendix D) provides
reasonable accuracies and allows a straight line interpolation of the data.
Because of the mechanisms used within the gyro, several precautions are
necessary. First, the gyro should be shielded from any mechanical shock. A
special vibration absorbing mounting material is used to limit the mid and high
frequency vibrations produced by the aircraft during flight. Because of this,
bolts or other securing devices are not required and, in fact, would simply
transmit the harmful vibrations if installed. Secondly, the gyro should not be
turned on unless the FIP is being used. The life of the bearings is limited and
unnecessary use simply shortens the time between servicing. Contact the
manufacturer if servicing is required.

The implementation of both bank and pitch is shown below. Care has
been taken to limit the current provided at the gyro electrical contacts.
Because of this current limiting, any modifications to the gyro portion of the FIP

* should be done in accordance with the gyro literature.

Bank Angle

Bank angle is derived using a vertical gyroscope. The gyro provides a
stabilized source around which a mechanically coupled potentiometer moves.
As the relative position of the gyro changes, a resistance change proportional
to the change in position occurs. The maximum bank angle to the left produces
an A/D count of zero, while a maximum bank angle to the right produces a
count of 4096. The null position for the sensor produces 2048 counts. Typical
values during test flights were between 681 and 3415 AID counts
corresponding to +20 and -20 degrees of roll.

Pitch angle is derived in a manner similar to that of bank angle. The
maximum pitch up occurs at +60 degrees or zero A/D counts. The maximum
pitch down occurs at -60 degrees or 4096 A/D counts. Null pitch, or zero
degrees is represented by 2048 counts. Typical values during test flights were
+25 to - 25 degrees of pitch corresponding to 1194 - 2901 A/D counts.
Because of the low delta value and the obvious resolution errors that could
occur, the gain on the op-amps may be doubled or tripled if the effective range
is not required.

Three - Axis Magnetometer

The three-axis magnetometer, manufactured by Dowty Defense & Air
Systems Limited, U.K., provides three axes of relational data. Each of the
integral coils provides one of three angular measurements of the Earth's
magnetic lines of flux. Output is provided as a ± 3 VDC signal proportional to
the position of the sensor angle to the Earth's flux lines. As an example, when a
sensor is parallel to the lines of flux, the resulting output is 0 VDC. If the sensor
is perpendicular, maximum saturation occurs and maximum voltage is obtained.
In this application, the three-axis strapdown magnetometer is used with the
vertical gyro to determine heading. The magnetometer provides a north
reference when nulled to a level condition using the angular offsets provided
by the pitch and roll gyro. The dip angle is measured by the Z axis and the
output data is read using the pitch gyro to null the dip angle. The nulled
position provides an X and Y angular output. The arctangent of the X and Y
provides the aircraft heading. A dip angle of 62 degrees is used but can be
changed within the software if the FIP is used at a location other than the state
of Texas.

X - Bank (wing to wing)
Y - Pitch

* Z - Dip angle

Because of the dynamics of flight, the assigned coils are not fixed but
instead flexible based on the mounting of the gyro. System repeatability,
accuracy, sensitivity, and frequency response are shown in Appendix E.

The magnetometer has been mounted using a standard strip adhesive.
Non-ferrous mounting of the device and the removal of moving ferrous based
objects near the device during flight are important considerations that will
insure accurate readings.

Heading Deviation

These data are derived using the difference between the calculated
heading from the three-axis magnetometer and the setting shown on the front
panel display. The compass headings are divided into the range of the A/D to
calculate the values given by the FIP as shown below.

Ex: 4096/360 = counts / degree of error = 11 counts per degree of error

A potentiometer is used to set the preferred heading. The high terminal of the
pot is provided with a 1 0V reference source. The low terminal of the pot is tied
to ground. The wiper provides a user selectable voltage that is then buffered
and read by the A/D board and displayed using a digital panel meter (see the
S section entitled Display Board below

FIP ELECTRONICS

Signal Conditioning Board

The internal electronics in the FIP are located on three printed circuit
boards. The main board, affixed to the base of the package, contains the
sensor signal conditioning electronics and buffer electronics. The board
mounted on the front of the FIP contains the battery pack power regulation and
filter electronics used to convert the battery supplies to voltages used within
the FIP and by the AOl. The final board provides the stabilized reference
sources for the potentiometers used to set both desired heading and altitude.

The signal conditioning system electronics (Appendix F) are designed
to work with either bridge-based or direct output sensors (Figure 3 Signal
Conditioning Electronics). If a bridge-based transducer is used, a complete
bridge and bridge amplifier are required if not specified in the original design.
Input amplifiers are either single ended or differential. Both the airspeed and
altitude sensors require that the pre-amplification stage configuration be
differential with gains of 200. In all other cases, input gains are minimal.

All sensors in the system were tested individually and found to have a
high frequency component that was not part of the useful data set. To eliminate
this, a standard input configuration was used. As shown in Figure 3, all
sensors are buffered using either unity gain op-amps (OP-77) or a pre-amplifier
configuration with a minimum gain as mentioned above. The next level of
processing includes a low pass filter with a roll offset to approximately 10 Hz.
The discrete implementation using an MC34084 provides a one chip filtration
that increases the system accuracy while providing the following amplification
stages with a clean low-level signal. Each signal is then buffered twice before
routing to the external analog connector or the system VME A/D converter
board. Gains on both buffers can be modified, but are set to provide the
maximum resolution to the A/D system. If gain changes are made in the system,
the program constants must also be changed in order to limit scaling errors. In
some cases, a -5 volt offset is added to allow for greater voltage swings within
the working ranges of the sensors.

Both the analog test connector and the A/D connector can be used to
directly monitor individual sensor operation. In most cases, the analog
connector is most appropriate for this purpose. Pin numbering for the analog
connector is shown below. The pin numbers for the A/D connector can be
derived using the data presented in the Mizar Analog Input Module manual
(Appendix I) and the channel numbering data shown in the section entitled
Data Processing Computer System.

The analog test connector provides the sensor signals on a 26 pin Berg
connector on the face of the FIP chassis. These pins provide only raw, and in
some cases, amplified signals to the user for general debugging and analysis.
The schematic for this board shows the output stages to this connector. Note

C - O-

< <I- c
o2 0 0-0

Oý 0

0z

00

-L u

- -- A

z
+ 0

LU
_ IU

- u

0

>+ > -

00
0 U)

IV -

0.0

that the OP-77 op-amps are the only buffering provided for these signals.
Because of this, care should be taken to limit the output current when driving
any significant loads.

The A/D channels, the signals being read, the connector numbering and
the signal names are shown below.

Signal Name Channel Qra5 Pi Be~g 26Pin
Altitude 4 1 3 20
Airspeed 5 17 22
Pitch angle 6 19 24
Roll angle 7 23 26
Mag. X-axis 8 2 18
Mag. Y-axis 9 4 16
Mag. Z-axis 10 8 14

Note: All unused inputs have been tied to ground on the printed circuit board.
This helps not only to limit the noise in the system but also to prevent errors in
software development.

Pins grounded on the Mizar A/D board:
3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,49,50

* Power Supply Board

Because the power supplies available in the aircraft were not
appropriate for this system, a battery package (see below) and power
convertor system were required. The power supply board (Appendix G)
consists of two Mizar DC-DC convertors (Appendix G). These units provide 5
volt outputs from 12 volt sources. The FIP utilizes +24V, ±12V, and +5 V as
shown below. The + and - 12V supplies are used directly from the battery
sources and filtered as necessary to eliminate reflected noise. The FIP also
requires a 24V supply for the vertical gyroscope. This is derived using two -12
V battery sources in series. The 5V supply was derived using the Mizar
convertor. Because the AOI is also powered from this system, a secondary 5V
Mizar convertor was required. The + and - 12V signals for the AOI are similarly
filtered. Power requirements and the voltages used by each portion of the
system are shown below.

AOI oower requiremnts
AOI digital board 5V @ 300ma
AOI 68HC1 1 board 5V @ 100ma
Timer 5V @ 50ma
Communications board 5V @ 100ma
Audio Board 5V @ 50ma

+12V@ 300ma
-12V@ 300ma

White noise and filter board 5V @ 50ma
-12V@ 150ma
+12V@ 150ma

FIP power requirements

VME system

SBC-2 5V @ 3.6A
+12V @ 35ma
-12V @ 35ma

VME-750 5V @ 1.2A
+12V @ 35ma
-12V @ 35ma

Co-processor 5V @ 150ma

Mizar A/D 5V @ 1.2 A

The use of Mizar power convertor modules caused several grounding
problems in the system. The first problem, the occurrence of noise above
1 MHz was expected because of the switching characteristics of the convertors
and is suppressed using extensive bypassing and liberal ferrite noise
suppressing. In several instances, a ground potential in excess of .5V was
observed with connected grounds. This was especially noticeable in the
computer system. In these cases, a single point ground is utilized.

Fuses

Fuses located on the board have been rated for twice the normal power
requirements of the system and, in certain cases, for twice the surge
requirements of sensors. If & fuse is blown, careful inspection is required to
determine the source of the problem. If the fault was mechanically induced,
replace the fuse with an identically rated fuse. If the fault was electrically
induced, the cause of the fault should be determined before the replacement
fuse is introduced into the system. Replacement of a faulty fuse when an
electrical failure has occurred will likely cause a further fault in the system.

Battery Package

An external battery package is used to power the FIP/AOI in flight. The
batteries are mounted in a transportable black case. Structural foam has been
added to prevent battery movement while transporting the case. A single AMP-
type circular connector delivers the unregulated battery voltages to the FIP
power converter board. A pin-out of the connector and the list of batteries is
provided in Appendix J. Placement within the case is shown in Figure 4.

> >' cm~q

> IV I

0- C4(N + +

LU

CC-,

* I4

LU

co
4)n

Under normal flight conditions, the FIP/AOI can be powered for at least
2.5 hours. Once the power has drained from the system, the individual
batteries must be re-charged before another flight can occur. Several re-
chargers are included with the system which require connection to an AC
power outlet. In most cases, the batteries can be returned to an operation state
in 4 to 6 hours. Because of the chemical properties of the batteries, it may be
necessary to deep cycle the batteries at regular intervals. If this is done
correctly, the batteries will not develop a memory, thus preventing full
charging. A simple way to deep cycle the batteries is to leave the FIP/AOI
power on while the system is connected. Unfortunately, this method reduces
the life of the gyro and will produce unknown voltages at the op-amps and the
DC-DC switching supplies. A safer method uses high wattage resistors placed
across the terminals of the regulator or the power connector. A typical value
for each 12V battery is a 24 ohm 10 watt resistor.

The Display Board

The display board contains two Acculex LCD-type displays, a pair of
potentiometers used to set the heading and altitude fly-to marks, the system
power switches, and the AOI power connector. The schematics and board
layouts for this board are shown in Appendix H. Data sheets for the Acculex
displays are in Appendix H.

This board allows the operator to selectively turn on and off the Gyro
power, AOI power, and FIP system power. The FIP power is wired in series
with both the AOI and Gyro power and therefore needs to be on for the other
components to work. Upon power-up, the Altitude Set and Heading Set
displays will show a number based on the current value of the 10-turn pots.
Changing the pot position will in turn change the number shown on the display
and the voltage applied to two channels of the A/D convertor (see below). To
achieve greater stability and system accuracy, REF-01 (Appendix H) voltage
references were used in the FIP. These sources provide the highly stable Vin
signal for the potentiometer voltage divider configuration over varied
temperatures and input voltages. The ribbon connector on the board carries
both the Display Board and Signal Processing Board signals to the A/D
convertor board. Because of this, care must be taken when re-assembling the
system to ensure that the connectors are properly engaged. A complete list of
parts is shown in Appendix K.

DATA PROCESSING COMPUTER SYSTEM

The computer system in the FIP is a VME-bus based 68010 processor,
VME/750 accessory interface board, and a Mizar 8605 analog to digital
convertor board. Data sheets and instruction manuals for the 68010 board are
provided in Appendix L. The manual for the VME/750 board is shown in
Appendix M. The manual for the Mizar 8605 board in shown in Appendix I.

. SBC-2 68010 board

The VME Specialist's 68010 board is a VME compatible microprocessor
with a 10-Mhz clock, 512k of dual port RAM, two RS-232 ports, one 16 bit
timer/counter, seven levels of interrupts, and EEPROM start-up capabilities.
The board is a standard 3U unit and occupies the first slot of the card cage.

VME/750

The VME/750 multi-function accessory board is provided with the SBC-
2. The VME-based board supports two additional RS-232 ports, a 16 bit
counter/timer, a real-time clock with battery backup, sockets for additional
RAM or ROMS, and a 68881 math co-processor. The board is tied directly to
the SBC-2 using board-to-board jumpers and does not utilize the VME
backplane for either data or address signals. The manual for this board is
provided in Appendix I.

MACH-2 FORTH/68000N/ME

Mach-2 Forth from Palo Alto Shipping Company was provided in ROM
to VME Specialists for this application. A high and low address ROM is
located on the SBC-2 board and is configured as the start-up system. Full
floating point support is provided in the code and access to the 68881 math co-
processor is required for proper operations of the unit. Code listings are
provided in Appendix C.

MIZAR 8605 A/D

The Mizar 8605 analog input module provides a 12 bit VME-based A/D
convertor. The board allows either 16 single ended or eight differential analog
inputs at user selectable voltage ranges. Signal amplification to 1000x is also
provided on the board. In this application, the board is configured to allow 16
single-ended inputs from -10 to +10 volts DC. Multiplexed, 25us conversion
provides data rates far in excess of those required by this application.
Connector data, conversion tracking information, schematics, and a parts list
are provided in Appendix I.

S

SYSTEM SOFTWARE

The FIP software is written to run on the VME Specialists SBC-2/750
combination board in conjunction with the Mizar 8605 A/D board. The entire
system uses the VME standard bus hardware configuration and is housed in a
Electronic Solutions five slot card cage. The program is written in the Mach-2
Forth language located in ROM on the VME Specialists VME-750 board. The
Flight Pack system is described best by splitting it in three parts. The three
parts, input, processing, and output, each work together to form the complete
processing loop.

Eleven of the 16 available A/D channels are used in this application for
signal inputs. Each channel is median-filtered using a constant filter size set by
a program constant. A data set for an input channel is acquired by collecting a
fixed number of values set by the filter size. Next the values are stored into an
array and a bubble sort performed. Then, the middle value in the array is used
as the current data value. This method proves effective in filtering out
undesirable fluctuations that could occur from sampling data in a hostile
environment.

All A/D channels are converted by the Mizar 8605 A/D board. The
converted data is in 12-bit binary values. Some channels will have varying
voltages converted to 12-bits which could be -10V to +10V (0 to 4096), -10V
to OV (0 to 2048), and OV to +1 OV (2048 to 4096). The software scales all
possible voltages accordingly to provide the highest system accuracy. The
following will describe the characteristics of each of the channels.

Channel 0: Altitude Set

This parameter is set using a potentiometer located on top of the FIP.
The value read is used as a target altitude for the pilot. The readings are
scaled from 0 to 12,000 and the voltage output is from OV to +10V.

Channel 1: Heading Set

This is set through a resistor pot. The value read is used as a target
heading for the pilot. The readings are scaled from 0 to 360, and the voltage
output is from OV to +1 OV.

Channel 2: Not used

Channel 3: Not used

* Channel 4: Altitude

This signal is read from a pressure transducer ranging from 0 to 15 PSI.
The voltage scale is -10V to 1OV. Note that the output voltage decreases with
altitude.

Channel 5: Air Speed

This is read from a pressure transducer ranging from 0 to 5 PSI. The
voltage scale is -10V to OV. As pressure increases, airspeed increases.

Channel 6: Pitch

This is read from the vertical gyroscope with a range of ±50 degrees.
The voltage scale is OV to 9.32V. For a 12-bit AID, the values are from 2048 to
3957.

Channel 7: Roll

This is read from a gyroscope with a range of ±70 degrees. The voltage
scale OV to 9.15V. For a 12-bit A/D, the values are from 2048 to 3922.

Channel 8: Y
Channel 9: X
Channel 10: Z

These are read from the magnetometer. The magnetometer senses the
relation of its position with the Earth's magnetic field. The voltage scale is ±3
volts for each channel. For a 12-bit A/D the values are from 1434 to 2662.

The X-axis is the roll position.
The Y-axis is the pitch position.
The Z-axis is the dip angle position.

The Flight Pack calculates seven variables using the data obtained from
the input channels. In addition to the scaling of the values read from the input
channels, the data is scaled again for use by the AOI system. All variables are
16-bit values.

Variable 1: Air Speed

The raw PSI for air speed is taken from channel 5 and put through a
lookup table. The lookup table has a knots-to-PSI correlation. By using an
index to the knots and getting the closest matching PSI value, the index is used
as the realized airspeed in knots. The realized knots are then scaled to 0 to

* 4096 for a range of 0 to 330 knots.

Variable 2: Angle of Attack

Not implemented

Variable 3: Vertical Velocity

Using a constant interval of five seconds, two separate readings of
altitude are used to find the difference of altitude over a fixed period of time.
The scaling of the final value is from 0 to 4096 with 2048 being no vertical
velocity, 0 for a 2048 feet per second or greater dive, and 4096 for a 2048 feet
per second or greater climb.

Variable 4: Heading Deviation

Heading value is calculated using the X, Y, Z, and pitch and roll
variables. The deviation of the calculated heading from the heading set value
in channel 1 is the final value. A scale of 0 to 360 is set for heading deviation.

Variable 5: Roll

Roll is read from channel 7 and is scaled to 0 to 4096 with 2048 being 0
degrees, 0 for 70 degrees left, and 4096 for 70 degrees right.

Variable 6: Pitch

Pitch is read from channel 6 and is scaled to 0 to 4096 with 2048 being 0
degrees, 0 for a 50 degree dive angle, and 4096 for a 50 degree climb angle.

Variable 7: Altitude Deviation

The PSI value is read from channel 4 and is put through a lookup table
that is a best fit model of a table obtained from the standard atmospheric
pressure table. The altitude is used with the altitude set value from channel 0 to
find the difference or the altitude deviation. The difference is scaled from 0 to
4096 with 2048 being zero feet of deviation, 0 for -2048 feet or less deviation,
and 4096 for +2048 feet or greater of deviation.

During processing of the input channels, the FIP data can be requested
for transmission at any time by the AOI system. To handle this request, a multi-
tasking environment has been implemented on the VME Specialist system
board. Processing of the input channels is performed in the foreground while
communications are performed in the background.

The background process checks the serial port number for the AOI
transmit data request. In order to prevent the two processes from accessing the
memory locations of the FIP data simultaneously, two data buffers are setup.
One buffer is set as the current buffer for data processing and the other buffer is
the completed, processed data ready for transmittal. The two buffers are
switched between these assignments to prevent sending incomplete data to the

FIP software. When the transmit data request arrives, the buffer containing

* processed data is sent to the AOI system.

Output

The seven variables that have been calculated are transmitted upon
receipt of a STX or Start TeXt (ASCII 2) character from the AOI system. Since
the seven values are 16-bit values, and the RS-232 lines only handle 8-bit
values, the 16-bit values are converted into 2 8-bit characters which are used
for transmission over RS-232 lines. The sum of the byte representation of the
seven values is used as a checksum to assure proper transmission. The
transmission packet format of the 7 variables are as follows:

SOH (ASCII 1 - Start Of Header)
AIRSPEED.HI AIRSPEED.LO
ANGLE OF ATTACK.HI ANGLE OF ATTACK.LO
VERTICAL VELOCITY.HI VERTICAL VELOCITY.LO
HEADING DEVIATION.HI HEADING DEVIATION.LO
ROLL.HI ROLL.LO
PITCH.HI PITCH.LO
ALTITUDE DEVIATION.HI ALTITUDE DEVIATION.LO
CHECKSUM.HI CHECKSUM.LO
ETX (ASCII 3- End of TeXt)

This format is actually a continuous stream of byte data from the ASCII
character SOH to ETX. The data is transmitted at 9600 baud, 8 bits, no parity,
and 1 stop bit. It ,.ie AOI calculates a different check.um of the packet from the
received checksum, it will send STX for an another packet to be transmitted
and will retry until a successful packet is received (Appendix C).

A data logging function is also performed by the FIP. The second serial
port on the SBC-2 has been configured to stream data at approximately one
frame per second. Under this system, no protocols are followed for the data
logger. The frame is simply transmitted to the host device and it is assumed that
the data arrived properly. Two tasks are utilized for this function. The
foreground task services the AOI requests and the A/D system. The
background task handles the once per second data logger update when the
AOI does not have a pending request.

Downloading Instructions

The software running in the FIP is stored in the downloading computer
system. To run the FIP code, a host computer must be used to send the
program to the FIP computer. Any simple terminal program can be used to
accomplish this task. During the development of the system, Mirror Ill, a
common terminal emulation package was utilized. The FIP communicates at
9600 baud, 8 data bits, 1 stop bit, no parity. Communication is established

* through port A (JA) of the FIP computer system. When running, the system
terminal will display <ok> on the screen. At this point, the system file called

FIPPRGM.TXT can be SEnt serially. Upon completion of the code transfer, the

system is started by typing:

xxx GET.PSI.TO.ALT.OFFSET

where xxx is the current field altitude in feet. This entry runs a word that
provides a curve fit that nulls the effect of temperature. Once an <ok> is
received, type:

FIPOUT FIPOUTTASK (hit a carriage return)

This runs the background data streaming task. If a terminal is hooked to port B
(JB) of the FIP computer, and the data is not streaming to the terminal, a
download problem has occurred and a re-load is required after checking all the
cable connections. When the terminal is streaming data, type:

FIPAOITASK

and the AOI will be ready to access the FIP. For instructions on downloading
the AOI code, see the AOI technical report re4-; ,,ed below.

ROM vs RAM

In this application, the system software is RAM based to allow maximum
testing flexibility. ROMS were initially considered but the constant changes
during flight made the RAM based system more appropriate. Initial tests on the
system showed that the inclusion of RAM provided a readily changed system
of code that could be modified in a standard PC editor environment without the
need for a ROM burner. Once the FIP is operating in a static development
state, the inclusion of ROMs is a simple task.

0

RESULTS

Initial flight tests of the system with the AOI provided real time data to
both the AOI and the data monitoring terminal. For an explanation of the AOI
inflight testing results, see the report titled Inflight Evaluation of an Acoustic
Orientation Instrument Final Report, March 1990.

During the sensor testing phases of the project, cockpit readings were
used to correlate sensor voltage readings to the actual flight values. In all
cases the sensors provided accurate readings within the parameters specified
in the Task Order. Because of the rapid changes that occurred during flight, it
was difficult to quantify the accuracies of the system. It was found, however,
that the FIP provided highly repetitive responses. Typical test protocols are
shown below:

Altitude test sampDle

Initial flight level: 8,000 ft
Target flight level: 10,000 ft

The pilot is asked to maintain a flight level of 8,000 feet for a period of 30
seconds. At this point, the measurements are saved to a file on the data logger.
The pilot is then asked to climb (typical climb rates were 200 ft/min) to an
altitude of 10,000 ft. Data was acquired during the period with the experimenter
noting the initial time, 1 minute intervals, and final time. During the same
period, the pilot is asked to verbally report the altitude shown by the aircraft
instruments in 100 foot intervals. Once altitude was stabilized, the file
recording was ceased. Data files from the series were recorded and analyzed
against the verbal reports. Similar series were taken for all altitudes.

Airspeed test sam pI

Minimum Airspeed: 90 kts
Maximum Airspeed: 180 kts

In this series, the pilot is asked to verbally report the airspeed shown on
the aircraft instruments while slowly increasing speed over a period of several
minutes. During the test, data are streamed to a portable computer and saved
in a file. The operator notes the initial time, reported airspeed in 10 kt
increments, and report time. This series was taken at multiple altitudes and in
varying weather conditions.

Heading test sample

Heading was determined using the aircraft instrumentation as a
reference. Static measurements taken on the ground were compared with the

0

readings from the cockpit instruments. While in flight, similar measurements

were taken to evaluate the effect of flight dynamics and in-cabin interference.

Bank / Pitch Angles

Static measurement taken on the ground confirmed the operation of the
gyro. While in flight, several maneuvers including rapid banking and pitch
changes were accomplished to test the dynamics of the system. In all cases,
the gyro performed to specifications.

All sensors, with the exception of the AOA vane, were tested during the
individual flight tests of the FIP.

0

0

0

Appendix A - Airspeed to A/D Lookup Table

0

0

Airspeed to PSI Table

Airspeed in Knots table from Aero Instruments, I
11 -08-88

Absolute

airspeed kts Pound/sq.foot delta value Airspeed
0.00 0.00 0.00
1.00 0.00 0.00 0.00
2.00 0.01 0.01 0.00
3.00 0.03 0.02 0.00
4.00 0.05 0.02 0.00
5.00 0.08 0.03 0.00
6.00 0.12 0.04 0.00
7.00 0.17 0.04 0.00
8.00 0.22 0.05 0.00
9.00 0.27 0.06 0.00
10.00 0.34 0.06 0.00
11.00 0.41 0.07 0.00
12.00 0.49 0.08 0.00
13.00 0.57 0.08 0.00
14.00 0.66 0.09 0.00
15.00 0.76 0.10 0.01
16.00 0.87 0.11 0.01
17.00 0.98 0.11 0.01

* 18.00 1.10 0.12 0.01
19.00 1.22 0.13 0.01
20.00 1.35 0.13 0.01
21.00 1.49 0.14 0.01
22.00 1.64 0.15 0.01
23.00 1.79 0.15 0.01
24.00 1.95 0.16 0.01
25.00 2.12 0.17 0.01
26.00 2.29 0.17 0.02
27.00 2.47 0.18 0.02
28.00 2.66 0.19 0.02
29.00 2.85 0.19 0.02
30.00 3.05 0.20 0.02
31.00 3.26 0.21 0.02
32.00 3.47 0.21 0.02
33.00 3.69 0.22 0.03
34.00 3.92 0.23 0.03
35.00 4.15 0.23 0.03
36.00 4.39 0.24 0.03
37.00 4.64 0.25 0.03
38.00 4.89 0.25 0.03
39.00 5.15 0.26 0.04
40.00 5.42 0.27 0.04
41.00 5.70 0.28 0.04
42.00 5.98 0.28 0.04

* 43.00 6.27 0.29 0.04
44.00 6.56 0.30 0.05

45.00 6.86 0.30 0.05. 46.00 7.17 0.31 0.05
47.00 7.49 0.32 0.05
48.00 7.81 0.32 0.05
49.00 8.14 0.33 0.06
50.00 8.48 0.34 0.06
51.00 8.82 0.34 0.06
52.00 9.17 0.35 0.06
53.00 9.53 0.36 0.07
54.00 9.89 0.36 0.07
55.00 10.26 0.37 0.07
56.00 10.64 0.38 0.07
57.00 11.02 0.38 0.08
58.00 11.41 0.39 0.08
59.00 11.81 0.40 0.08
60.00 12.21 0.40 0.08
61.00 12.62 0.41 0.09
62.00 13.04 0.42 0.09
63.00 13.47 0.42 0.09
64.00 13.90 0.43 0.10
65.00 14.34 0.44 0.10
66.00 14.78 0.45 0.10
67.00 15.24 0.45 0.11
68.00 15.70 0.46 0.11
69.00 16.16 0.47 0.11. 70.00 16.64 0.47 0.12
71.00 17.12 0.48 0.12
72.00 17.60 0.49 0.12
73.00 18.10 0.49 0.13
74.00 18.60 0.50 0.13
75.00 19.10 0.51 0.13
76.00 19.62 0.52 0.14
77.00 20.14 0.52 0.14
78.00 20.67 0.53 0.14
79.00 21.20 0.54 0.15
80.00 21.75 0.54 0.15
81.00 22.30 0.55 0.15
82.00 22.85 0.56 0.16
83.00 23.42 0.56 0.16
84.00 23.98 0.57 0.17
85.00 24.56 0.58 0.17
86.00 25.15 0.58 0.17
87.00 25.74 0.59 0.18
88.00 26.33 0.60 0.18
89.00 26.94 0.60 0.19
90.00 27.55 0.61 0.19
91.00 28.17 0.62 0.20
92.00 28.79 0.63 0.20
93.00 29.43 0.63 0.20
94.00 30.07 0.64 0.21
95.00 30.71 0.65 0.21
96.00 31.37 0.65 0.22

97.00 32.03 0.66 0.22. 98.00 32.69 0.67 0.23
99.00 33.37 0.67 0.23
100.00 34.05 0.68 0.24
101.00 34.74 0.69 0.24
102.00 35.43 0.70 0.25
103.00 36.14 0.70 0.25
104.00 36.85 0.71 0.26
105.00 37.56 0.72 0.26
106.00 38.29 0.72 0.27
107.00 39.02 0.73 0.27
108.00 39.75 0.74 0.28
109.00 40.50 0.74 0.28
110.00 41.25 0.75 0.29
111.00 42.01 0.76 0.29
112.00 42.77 0.77 0.30
113.00 43.55 0.77 0.30
114.00 44.33 0.78 0.31
115.00 45.11 0.79 0.31
116.00 45.91 0.79 0.32
117.00 46.71 0.80 0.32
118.00 47.52 0.81 0.33
119.00 48.33 0.82 0.34
120.00 49.15 0.82 0.34
121.00 49.98 0.83 0.35
122.00 50.82 0.84 0.35
123.00 51.66 0.84 0.36
124.00 52.52 0.85 0.36
125.00 53.37 0.86 0.37
126.00 54.24 0.86 0.38
127.00 55.11 0.87 0.38
128.00 55.99 0.88 0.39
129.00 56.88 0.89 0.39
130.00 57.77 0.89 0.40
131.00 58.67 0.90 0.41
132.00 59.58 0.91 0.41
133.00 60.50 0.92 0.42
134.00 61.42 0.92 0.43
135.00 62.35 0.93 0.43
136.00 63.28 0.94 0.44
137.00 64.23 0.94 0.45
138.00 65.18 0.95 0.45
139.00 66.14 0.96 0.46
140.00 67.10 0.97 0.47
141.00 68.08 0.97 0.47
142.00 69.06 0.98 0.48
143.00 70.04 0.99 0.49
144.00 71.04 0.99 0.49
145.00 72.04 1.00 0.50
146.00 73.05 1.01 0.51
147.00 74.07 1.02 0.51
148.00 75.09 1.02 0.52

149.00 76.12 1.03 0.53. 150.00 77.16 1.04 0.54
151.00 78.21 1.05 0.54
152.00 79.26 1.05 0.55
153.00 80.32 1.06 0.56
154.00 81.39 1.07 0.57
155.00 82.46 1.07 0.57
156.00 83.54 1.08 0.58
157.00 84.63 1.09 0.59
158.00 85.73 1.10 0.60
159.00 86.83 1.10 0.60
160.00 87.95 1.11 0.61
161.00 89.07 1.12 0.62
162.00 90.19 1.13 0.63
163.00 91.33 1.13 0.63
164.00 92.47 1.14 0.64
165.00 93.61 1.15 0.65
166.00 94.77 1.16 0.66
167.00 95.93 1.16 0.67
168.00 97.11 1.17 0.67
169.00 98.28 1.18 0.68
170.00 99.47 1.19 0.69
171.00 100.66 1.19 0.70
172.00 101.86 1.20 0.71
173.00 103.07 1.21 0.72
174.00 104.29 1.22 0.72
175.00 105.51 1.22 0.73
176.00 106.74 1.23 0.74
177.00 107.98 1.24 0.75
178.00 109.22 1.25 0.76
179.00 110.48 1.25 0.77
180.00 111.74 1.26 0.78
181.00 113.01 1.27 0.78
182.00 114.28 1.28 0.79
183.00 115.57 1.28 0.80
184.00 116.86 1.29 0.81
185.00 118.16 1.30 0.82
186.00 119.46 1.31 0.83
187.00 120.77 1.31 0.84
188.00 122.10 1.32 0.85
189.00 123.42 1.33 0.86
190.00 124.76 1.34 0.87
191.00 126.11 1.34 0.88
192.00 127.46 1.35 0.89
193.00 128.82 1.36 0.89
194.00 130.18 1.37 0.90
195.00 131.56 1.37 0.91
196.00 132.94 1.38 0.92
197.00 134.33 1.39 0.93
198.00 135.73 1.40 0.94
199.00 137.13 1.41 0.95
200.00 138.55 1.41 0.96

201.00 139.97 1.42 0.97. 202.00 141.40 1.43 0.98
203.00 142.83 1.44 0.99
204.00 144.28 1.44 1.00
205.00 145.73 1.45 1.01
206.00 147.19 1.46 1.02
207.00 148.66 1.47 1.03
208.00 150.13 1.48 1.04
209.00 151.61 1.48 1.05
210.00 153.10 1.49 1.06
211.00 154.60 1.50 1.07
212.00 156.11 1.51 1.08
213.00 157.62 1.52 1.09
214.00 159.15 1.52 1.11
215.00 160.68 1.53 1.12
216.00 162.21 1.54 1.13
217.00 163.76 1.55 1.14
218.00 165.31 1.55 1.15
219.00 166.87 1.56 1.16
220.00 168.44 1.57 1.17
221.00 170.02 1.58 1.18
222.00 171.61 1.59 1.19
223.00 173.20 1.59 1.20
224.00 174.80 1.60 1.21
225.00 176.41 1.61 1.23
226.00 178.03 1.62 1.24
227.00 179.65 1.63 1.25
228.00 181.29 1.63 1.26
229.00 182.93 1.64 1.27
230.00 184.58 1.65 1.28
231.00 186.23 1.66 1.29
232.00 187.90 1.67 1.30
233.00 189.57 1.67 1.32
234.00 191.25 1.68 1.33
235.00 192.94 1.69 1.34
236.00 194.64 1.70 1.35
237.00 196.35 1.71 1.36
238.00 198.06 1.71 1.38
239.00 199.78 1.72 1.39
240.00 201.51 1.73 1.40
241.00 203.25 1.74 1.41
242.00 205.00 1.75 1.42
243.00 206.75 1.75 1.44
244.00 208.51 1.76 1.45
245.00 210.28 1.77 1.46
246.00 212.06 1.78 1.47
247.00 213.85 1.79 1.49
248.00 215.65 1.80 1.50
249.00 217.45 1.80 1.51
250.00 219.26 1.81 1.52
251.00 221.08 1.82 1.54
252.00 222.91 1.83 1.55

253.00 224.75 1.84 1.56
254.00 226.59 1.85 1.57
255.00 228.45 1.85 1.59
256.00 230.31 1.86 1.60
257.00 232.18 1.87 1.61
258.00 234.06 1.88 1.63
259.00 235.95 1.89 1.64
260.00 237.84 1.90 1.65
261.00 239.75 1.91 1.66
262.00 241.66 1.91 1.68
263.00 243.58 1.92 1.69
264.00 245.51 1.93 1.70
265.00 247.45 1.94 1.72
266.00 249.39 1.95 1.73
267.00 251.35 1.95 1.75
268.00 253.31 1.96 1.76
269.00 255.28 1.97 1.77
270.00 257.26 1.98 1.79
271.00 259.25 1.99 1.80
272.00 261.25 2.00 1.81
273.00 263.25 2.01 1.83
274.00 265.27 2.01 1.84
275.00 267.29 2.02 1.86
276.00 269.32 2.03 1.87
277.00 271.36 2.04 1.88

* 278.00 273.41 2.05 1.90
279.00 275.47 2.06 1.91
280.00 277.53 2.07 1.93
281.00 279.61 2.07 1.94
282.00 281.69 2.08 1.96
283.00 283.78 2.09 1.97
284.00 285.88 2.10 1.99
285.00 287.99 2.11 2.00
286.00 290.11 2.12 2.01
287.00 292.24 2.13 2.03
288.00 294.37 2.14 2.04
289.00 296.52 2.15 2.06
290.00 298.67 2.15 2.07
291.00 300.84 2.16 2.09
292.00 303.01 2.17 2.10
293.00 305.19 2.18 2.12
294.00 307.37 2.19 2.13
295.00 309.57 2.20 2.15
296.00 311.78 2.21 2.17
297.00 313.99 2.22 2.18
298.00 316.22 2.22 2.20
299.00 318.45 2.23 2.21
300.00 320.69 2.24 2.23
301.00 322.95 2.25 2.24
302.00 325.21 2.26 2.26

S 303.00 327.47 2.27 2.27
304.00 329.75 2.28 2.29

305.00 332.04 2.29 2.31
306.00 334.34 2.30 2.32
307.00 336.64 2.31 2.34
308.00 338.96 2.32 2.35
309.00 341.28 2.32 2.37
310.00 343.61 2.33 2.39
311.00 345.95 2.34 2.40
312.00 348.30 2.35 2.42
313.00 350.67 2.36 2.44
314.00 353.03 2.37 2.45
315.00 355.41 2.38 2.47
316.00 357.80 2.39 2.48
317.00 360.20 2.40 2.50
318.00 362.60 2.41 2.52
319.00 365.02 2.42 2.53
320.00 367.44 2.42 2.55
321.00 369.88 2.43 2.57
322.00 372.32 2.44 2.59
323.00 374.7- 2.45 2.60
324.00 377.94 2.46 2.62
325.00 31S9.11 2.47 2.64
326.00 382.19 2.48 2.65
327.00 384.68 2.49 2.67
328.00 387.18 2.50 2.69
329.00 389.69 2.51 2.71. 330.00 392.20 2.52 2.72
331.00 394.73 2.53 2.74
332.00 397.27 2.54 2.76
333.00 399.82 2.55 2.78
334.00 402.37 2.56 2.79
335.00 404.94 2.57 2.81
336.00 407.51 2.58 2.83
337.00 410.10 2.59 2.85
338.00 412.69 2.60 2.87
339.00 415.30 2.60 2.88
340.00 417.91 2.61 2.90
341.00 420.53 2.62 2.92
342.00 423.17 2.63 2.94
343.00 425.81 2.64 2.96
344.00 428.46 2.65 2.98
345.00 431.12 2.66 2.99
346.00 433.79 2.67 3.01
347.00 436.48 2.68 3.03
348.00 439.17 2.69 3.05
349.00 441.87 2.70 3.07
350.00 444.58 2.71 3.09
351.00 447.30 2.72 3.11
352.00 450.03 2.73 3.13
353.00 452.77 2.74 3.14
354.00 455.52 2.75 3.16. 355.00 458.28 2.76 3.18
356.00 461.05 2.77 3.20

357.00 463.83 2.78 3.22O 358.00 466.62 2.79 3.24
359.00 469.42 2.80 3.26
360.00 472.23 2.81 3.28
361.00 475.05 2.82 3.30
362.00 477.88 2.83 3.32
363.00 480.72 2.84 3.34
364.00 483.57 2.85 3.36
365.00 486.43 2.86 3.38
366.00 489.30 2.87 3.40
367.00 492.18 2.88 3.42
368.00 495.07 2.89 3.44
369.00 497.97 2.90 3.46
370.00 500.88 2.91 3.48
371.00 503.80 2.92 3.50
372.00 506.73 2.93 3.52
373.00 509.68 2.94 3.54
374.00 512.63 2.95 3.56
375.00 515.59 2.96 3.58
376.00 518.56 2.97 3.60
377.00 521.54 2.98 3.62
378.00 524.54 2.99 3.64
579.00 527.54 3.00 3.66
380.00 530.55 3.01 3.68
381.00 533.58 3.02 3.71
382.00 536.61 3.04 3.73
383.00 539.66 3.04 3.75
384.00 542.71 3.06 3.77
385.00 545.78 3.07 3.79
386.00 548.85 3.08 3.81
387.00 551.94 3.09 3.83
388.00 555.04 3.10 3.85
389.00 558.15 3.11 3.88
390.00 561.27 3.12 3.90
391.00 564.39 3.13 3.92
392.00 567.53 3.14 3.94
393.00 570.69 3.15 3.96
394.00 573.85 3.16 3.99
395.00 577.02 3.17 4.01
396.00 580.20 3.18 4.03
397.00 583.39 3.19 4.05
398.00 586.60 3.20 4.07
399.00 589.81 3.22 4.10

Appendix B - Altitude vs. PSI Code and Equation

Altitude to PSI conversion code and equation

(PRESSURE TO ALTITUDE COVERSION TABLE GERATOR AND
TABLE LCOKUP. EQUATION IS DERIVED FROM BEST REGRESSION
FIT TO 1.000.

S. MIKITEN 12/28/88

ALSO MATH

DECIMAL

: O)PD.ARRAY
CREAME

4 * ALLOT

DOES>
SWAP 4 * + ;

4620 WORD.ARRAY PSI.TO.ALT

PSI.TO.ALTGEN
1052 590 (FROM 590 P,MB TO 1052 P, MB
DO (GO FRCM 14000 FEET TO -1000FEET)

10 0
DO

I I>F 10 I>F F! (GET FRACTIOAL VALUE I / 10
J I>F F+ (ADD J TO FRACTIONAL VALUE
FDUP (DUPLICATE FOR USER IN

CONVERSION TO PSI)
" 68.94752" FNUMBER? (PUT 68.94752 INTO F STACK)
DROP (DROP RESULT FROM FNUMBER?
F/ (DIVIDE J+I/10 BY 68.94752 TO

GET PSI)
FDUP (DUPLICATE TO USE IN REGRESSION

FIT)
" 65631.615" FNUMBER? (PUT 65631.615 INTO F STACK)
DROP (DROP RESULT FROM FNUMBER?
FS P (SWAP FOR 65631.615 PSI ON FP. STA1K)
" 12649.672" ENUMBER? (PUT 12649.672 INTO F STACK)

DROP (DROP RESULT FRCM FNUMBER?
F* (IJLTIPLY PSI WITH 12649.672)
F- (ALT = 65631.615 - 12649.672 *

PSI)
FOVER (GET A COPY OF PSI)
FDUP (GET ANOTHER COPY OF PSI)
F* (PSI2)
" 1420.339" FNUMBER? (PUT 1420.339 INTO FP STACK
DROP (DROP RESULT FROM FNUMBER?
F*

F+ (ALT = ALT + 1420.339 * PSIA2
FOVER (GET A COPY OF PSI)
FDUP (GET ANOTHER COPY OF PSI
FDUP (GET YET ANOTHER COPY OF PSI
F*

F*(RESULT IS PSIA3
" 107.508" FNUMBER? (PUT 107.508 INTO FP STACK
DROP (DROP RESULT FRCM FNUMBER?)
F*
F- (ALT = ALT - 107.508 * PSIA3
FOVER

* BiJUPFIYJIP

ElDUP
F*
F*
F*(RESULT IS PSIA4)
" 4.3969" FNUMBER? (PUT 4.3969 INTO FP STACO)
DROP (DROP RESULT FR(] FNUMBER?

F+ (ALT = ALT - 4.3969 * PSIA4)
FOVER

FDUP

FENJP
F*

F*
F*
F* (RESULT IS PSIA5)
" .073447" FNUMBER? (PUT .073447 INTO FP STACK
DROP
F*

F- (ALT = ALT - .073447 * PSI^50 F>I (CONVERT FLOATING POINT VALUE TO
INTEER)

J 10 * 1 + (CALCULATE OFFSET INTO ARRAY)
5900 - (OFFSET FROM 5900)
PSI.TO.ALT (ADDRESS OF FPSI ARRAY)
W! (STORE ALT INTO FPSI TABLE)
FDROP (ELIMINTE PSI
FDROP (ELIMINATE P, MB

LOOP
LOO3P ;

VARIABLE PSI. TO.ALT.OFFSET

PSI.TO.ALT LOOKUP
2048 SWAP - I>F (PUT PSI ONTO FLOATING POINT STACK)
" 136.53333" FNUMBER? (SCALE A/D VALUE TO PSI - 2048/15)
DROP (DROP RESULT FROtM FNUMBER?)
F1 (DIVIDE A/D BY 273.06666)
" 68.94752" FNUMBER? (PUT PSI TO PMB C1NVERSTION INTO FP

STACK)0 DROP (DROP RESULT FROM FNUMBER?)
F* (MI4LT BY 68.94752 FOR PRESSURE IN

MILLIBARS)
" 10.0" FNUMBER? (PUT 10 INTO FP STACK
DROP (DROP RESULT FRCM FNUMBER?)
F* (MJLTIPLY BY 10 TO OBTAIN OFFSET

VALUE)
F>I (CVT FRCM FP TO INT)
5900 - (SUBTRACT 5900 FRCM OFFSET INTO FPSI

TABLE)
PSI.TO.ALT.OFFSET @ + (ADJUST FOR BASE ALT. ERROR)
DUP 0 < (TEST IF RESULT IS LESS THAN ZERO
IF DROP 0 EXIT THEN (IF TRUE, MAKE RESULT = 0
PSI.TO.ALT (THE FPSI ARRAY)
W@ (FETCH THE VALUE FROM THE FPSI TABLE

Q)

Appendix C - Source Code

L

(FLIGHT PACK 11/13/89)

READS THE VME 750 TIME FROM THE NATIONAL MM58274 REAL TIME CHIP
WRITE A 1 AT F20001 TO START THE TIME
1/1/89 SM

HEX

: FIP

: GET.YEARS (- n GETS YEARS FROM VME 750
F2001B C@ (FETCH TENS
OF AND (AND VALUE
OA * (MULTIPLY IT BY 1)
F20019 C@ (FETCH UNITS
OF AND

: GET.MONTHS (- n GETS MONTHS FROM VME 750
F20017 C@ (FETCH TENS
OF AND
OA * (MULTIPLY IT BY 10)
F20015 C@ (FETCH UNITS
OF AND
+ ;

: GET.DAY (- n GETS THE DAY FROM THE VME 750
F20013 C@ (FETCH TENS
OF AND
OA * (MULTIPLY IT BY 1)
F20011 C@ (FETCH UNITS
OF AND
+ ;

: GET.HOURS (- n GETS THE HOURS FROM THE VME 750
F2000F C@ (FETCH TENS

OF AND
OA * (MULTIPLY IT BY 1)
F2000D C@ (FETCH UNITS
OF AND
+ ;

: GET.MINUTES (- n GETS THE MINUTES FROM THE VME 750
F2000B C@ (FETCH TENS
OF AND
OA * (MULTIPLY IT BY 1)
F20009 C@ (FETCH UNITS
OF AND
+ ;

: GET.SECONDS (- n GETS THE SECONDS FROM THE VME 750
F20007 C@ (FETCH TENS
OF AND
OA * (MULTIPLY IT BY 1)
F20005 C@ (FETCH UNITS
OF AND+*

: GET.TENTHS.OF.SECOND (- n GETS THE 1/10TH SECONDS FROM THE VME 750
F20003 C@ (FETCH TENS
OF AND

: GET.TIME (- n n n n n n n GETS TIME FROM THE VME750 BOARD
GET.TENTHS.OF.SECOND
GET. SECONDS
GET.MINUTES
GET. HOURS
GET.DAY
GET.MONTHS
GET.YEARS

VARIABLE SEPARATOR
3A SEPARATOR C! (SET SEPARATOR TO A COLON
VARIABLE BACKUP
8 BACKUP C! (BACKSPACE

: SHOW.TIME (n n nfn n n n n - DISPLAYS TIME TO THE CURRENT DEVICE
GET.TIME

BACKUP C@ EMIT SEPARATOR C@ EMIT
* BACKUP C@ EMIT SEPARATOR C@ EMIT
* BACKUP C@ EMIT SEPARATOR C@ EMIT

BACKUP C@ EMIT SEPARATOR C@ EMIT
BACKUP C@ EMIT SEPARATOR CQ EMIT
BACKUP C@ EMIT SEPARATOR C@ EMIT

* .CR;

DECIMAL

: START GET.SECONDS . GET.TENTHS.OF.SECOND CR ;
: STOP GET.SECONDS . GET.TENTHS.OF.SECOND CR ;
: TESTIT 1000 0 DO 1 IF THEN LOOP ;
: BCM START TESTIT STOP

HEX

: VME750.SET.TIME
1 F2001D C! (DAY OF WEEK - SUNDAY
8 F2001B C! (TENS OF YEAR - 89)
9 F20019 C! (DIGITS OF YEAR - 89
0 F20017 C! (TENS OF MONTH - JUNE
6 F20015 C! (DIGITS OF MONTH - JUNE
0 F20013 C! (TENS OF DAY - 1
1 F20011 C! (DIGITS OF DAY - 1
2 F2000F C! (TENS OF HOUR - 21: 9 O'CLOCK
1 F2000D C! (DIGITS OF HOUR - 21: 9 O'CLOCK
1 F2000B C! (TENS OF MINUTES - 17)
7 F20009 C! (DIGITS OF MINUTES - 17
0 F20007 C! (TENS OF SECONDS - 0)
0 F20005 C! (DIGITS OF SECONDS - 0
0 F20003 C! (10TH'S OF SECOND)
1 F20001 C! (WRITE A 1 TO START REAL TIME CLOCK

. VME750.SET.TIME

. DECIMAL

VARIABLE OUTSECONDS
VARIABLE OUT DELAY1
VARIABLE OUT DELAY2
1000 OUT DELAY1
410 OUTDELAY2
0 OUTSECONDS

: OUT DELAY
OUTDELAY1 @ 0
DO

OUTDELAY2 @ 0
DO
LOOP

LOOP
OUTSECONDS @
1+
OUTSECONDS

PRESSURE TO ALTITUDE COVERSION TABLE GENERATOR AND
TABLE LOOKUP. EQUATION IS DERIVED FROM BEST REGRESSION
FIT TO 1.000.)

S. MIKITEN 12/28/88

ALSO MATH

DECIMAL

: WORD.ARRAY
CREATE

4 * ALLOT

DOES>
SWAP 4 * + ;

4620 WORD.ARRAY PSI.TO.ALT

: PSI.TO.ALT GEN
1052 590 (FROM 590 P,MB TO 1052 P,MB
DO (GO FROM 14000 FEET TO -1000 FEET

10 0
DO

I I>F 10 I>F F/ (GET FRACTIONAL VALUE I / 10
J I>F F+ (ADD J TO FRACTIONAL VALUE)
FDUP (DUPLICATE FOR USER IN CONVERSION TO PSI
" 68.94752" FNUMBER? (PUT 68.94752 INTO F STACK
DROP (DROP RESULT FROM FNUMBER?
F1 (DIVIDE J+I/10 BY 68.94752 TO GET PSI
FDUP (DUPLICATE TO USE IN REGRESSION FIT
" 65631.615" FNUMBER? (PUT 65631.615 INTO F STACK
DROP (DROP RESULT FROM FNUMBER?
FSWAP (SWAP FOR 65631.615 PSI ON FP STACK)
"1" 12649.672" FNUMBER? (PUT 12649.672 INTO F STACK
DROP (DROP RESULT FROM FNUMBER?

F* (MULTIPLY PSI WITH 12649.672
F- (ALT = 65631.615 - 12649.672 * PSI
FOVER (GET A COPY OF PSI)
FDUP (GET ANOTHER COPY OF PSI
F* (PSI^2)
" 1420.339" FNUMBER? (PUT 1420.339 INTO FP STACK
DROP (DROP RESULT FROM FNUMBER?
F*
F+ (ALT = ALT + 1420.339 * PSI^2
FOVER (GET A COPY OF PSI)
FDUP (GET ANOTHER COPY OF PSI
FDUP (GET YET ANOTHER COPY OF PSI
F*
F* (RESULT IS PSI^3
" 107.508" FNUMBER? (PUT 107.508 INTO FP STACK
DROP (DROP RESULT FROM FNUMBER?
F*
F- (ALT = ALT - 107.508 * PSI^3
FOVER
FDUP
FDUP
FDUP
F*
F*
F* (RESULT IS PSI^4
" 4.3969" FNUMBER? (PUT 4.3969 INTO FP STACO
DROP (DROP RESULT FROM FNUMBER?
F*
F+ (ALT = ALT - 4.3969 * PSI^4
FOVER
FDUP
FDUP
FDUP
FDUP
F*
F*
F*
F* (RESULT IS PSI^5
" .073447" FNUMBER? (PUT .073447 INTO FP STACK
DROP
F*
F- (ALT = ALT - .073447 * PSI^5
F>I (CONVERT FLOATING POINT VALUE TO INTEGER
J1 0 * 1 + (CALCULATE OFFSET INTO ARRAY
5900 - (OFFSET FROM 5900)
PSI.TO.ALT (ADDRESS OF FPSI ARRAY
W! (STORE ALT INTO FPSI TABLE
FDROP (ELIMINATE PSI
FDROP (ELIMINATE P,MB

LOOP
LOOP ;

VARIABLE PSI. TO.ALT. OFFSET

PSI.TO.ALT LOOKUP
2048 SWAP - I>F (PUT PSI ONTO FLOATING POINT STACK
" 136.53333" FNUMBER? (SCALE A/D VALUE TO PSI - 2048/15
DROP (DROP RESULT FROM FNUMBER?

F/ (DIVIDE A/D BY 273.06666
"68.94752" FNUMBER? PUT PSI TO P,MB CONVERSTION INTO FP STACK

DROP (DROP RESULT FROM FNUMBER?)
F* (MULT BY 68.94752 FOR PRESSURE IN MILLIBARS
" 10.0" FNUMBER? (PUT 10 INTO FP STACK)
DROP (DROP RESULT FROM FNUMBER?
F* (MULTIPLY BY 10 TO OBTAIN OFFSET VALUE
F>I (CVT FROM FP TO INT)
5900 - (SUBTRACT 5900 FROM OFFSET INTO FPSI TABLE
PSI.TO.ALT.OFFSET @ + (ADJUST FOR BASE ALT. ERROR)
DUP 0 < (TEST IF RESULT IS LESS THAN ZERO
IF DROP 0 EXIT THEN (IF TRUE, MAKE RESULT = 0
PSI.TO.ALT (THE FPSI ARRAY)
W@ (FETCH THE VALUE FROM THE FPSI TABLE

FP

LONG.ARRAY
CREATE

8 * ALLOT
DOES>

SWAP 8 *+ ;

340 LONG.ARRAY PSI.TO.AIRSPEED

VARIABLE PSI. TO.AIRSPEED. PTR

0 PSI.TO.AIRSPEED.PTR

: PSI.TO.AIRSPEED.GEN
0.0069444 F* (CONVERT TO PSI
PSI.TO.AIRSPEED.PTR @
PSI.TO.AIRSPEED F!
PSI.TO.AIRSPEED.PTR @
1+ PSI.TO.AIRSPEED.PTR

: PSI.TO.AIRSPEED.LOOKUP
-1 PSI.TO.AIRSPEED.PTR
BEGIN

PSI.TO.AIRSPEED.PTR @
1+ PSI.TO.AIRSPEED.PTR
PSI.TO.AIRSPEED.PTR @
331 >
IF

0 FDROP (BCM MOD) EXIT
THEN
FDUP
PSI.TO.AIRSPEED.PTR @
PSI.TO.AIRSPEED F@
FSWAP (BCM MOD
F>

UNTIL
FDROP
PSI.TO.AIRSPEED.PTR @

(CALCULATIONS FOR MAGNETOMETER HEADING

FVARIABLE L (10.0 / 0.6 - 10 VOLTS/600 MILLIGAUSS
FVARIABLE PT CPT=(PI/180]*P)
FVARIABLE RL (RL=(PI/180]*R)
FVARIABLE El (B1=MAGNETOMETER X AXIS/L
FVARIABLE B2 (B2=MAGNETOMETER Y AXIS/L
FVARIABLE B3 (B3=MAGNETOMETER Z AXIS/L
FVARIABLE B (B=SQRT[B1A2+B2-2+B3 A2]
FVARIABLE SD (SD=[B3*SINfPT]+FB1*SIN[RL]l-B2*COS[RL]]*CO[P]]lB
FVARIABLE CD (CD=SQRT[1-SD^2]
FVARIABLE TD (TD=SD/CD)
FVARI.ABLE D (D=ATANtTD]
FVARIABLE CZ (CZ=tB3-B*SIur:PT]*SIN(DID]/EB*COS[PT)*COSDI:D+.000001]
FVARIABLE SZ CSZ=[B1*COS[RL]+B2*SIN[RL]]/[B*COS(D)]
FVARIABLE TZ (TZ=SZ/(CZ+.000001]
FVARIABLE Z (Z=ATAN[TZ]
FVARIABLE MX
FVARIABLE MY
FVARIABLE MZ

GETHEADING {R P
10.0 0.6 F/ L F! (10.0 / .6 -10 VOLTS/600 MILLIGAUSS
PI 180.0 F/ P I>F F* PT F! (PT=(PI/180]*P)
PI 180.0 F/ R I>F F* RL F! (RL=CPI/180]*R)
MX F@ LF@ F/ BlF! (Bl=MX/L)
MYF@ LF@ F/ B2F! (B2=MY/L)
MZ F@ LF@ F1B3 F! (B3=MZ/L)S l F@ El F@ F*
B2 F@ B2 F@ F*
B3 F@ B3 F@ F*
F+ F+ FSQRT B F! CB=SQRT[B1^2+B2^2+B3-2]
B3 F@ PT F@ FSIN F*
El F@ PL F@ FSIN F*
B2 F@ RL F@ FCOS F*
F- PT F@ FCOS F* F+ B F@ F1
SD F! (SD=tB3*SINtPT1+tBl*SIN(BL1-B2*COSIRL1]*COS[PT] 1/B
1.0 SD F@ SD F@ F* F- FSQRT CD F! CCD=SQRT[1.-SD-2J
SD F@ CD F@ F! TD F! (TD=SD/CD
TD F@ FATAN D F! (D=ATANtTD]
B3 F@ B F@ PT F@ FSIN D F@ FSIN F* F* F-
B F@ PT F@ FCOS D F@ FCOS F* F* 0.000001 F+ F!
CZ F! (CZ=[B3-B*SIN[PT]*SINtD) I/EB*COSEPT]*COStD)+.0000011
El Fe RL Fe FCOS F*
B2 F@ PL Fe FSIN F* F+
B F@ D F@ FCOS F* F/
SZ F! CSZ=[B1*COS[RL]+B2*SIN[RL]]/CB*COS[D]]
SZ Fe CZ Fe 0.000001 F+ F1
TZ F! (TZ=SZ/rCZ+.00000l11
TZ Fe FATAN Z F! CZ=ATAN[Tz]
CZ Fe
0.0 F<
IF

Z F@PI F+ ZF! CIF CZ <0THEN Z Z +PI
ELSE

SZ Fe0 0.0 F<

IF
Z F@ PI PI F* F+ Z F! (IF CZ > 0 AND SZ < 0 THEN Z = Z + P1*2

THEN
THEN

180.0 PI F/ Z F@ F* (AZIMUTH=[180/PII*Z
F>I

INT

LAST UPDATE 9/27/88
BOARD NAME: MZ 8605

(AUTHOR: BCM)
INPUT GAIN SET TO UNITY

(SINGLE ENDED INPUT
+ - 5V INPUT LEVELS

HEX
FFFEOO CONSTANT A/D.BASE.ADDRESS

: START.CONVERSION (- STARTS A CONVERSION - VALUE IGNORED
00 A/D.BASE.ADDRESS W! ;

: SELECT.CHANNEL (n - LOW 4 BITS USED OTHERS IGNORED, START CONVERT
A/D.BASE.ADDRESS 2 + (ADD TWO TO SET PROPER REGISTER)
W! (WRITE THE CHANNEL NUMBER TO THE BOARD AND CONVERT

: ANALOG.READ (- n GET DIGITAL VALUE - LOWER 12 ARE VALID
A/D.BASE.ADDRESS 2 + W@ ;

: INT.LEVEL. SELECT (n - SELECT THE INTERRUPT LEVEL
A/D.BASE.ADDRESS 4 + W! DROP (WRITE 8 BITS OF 16 BIT VALUE

: INT.ENABLE (n - ENABLE INTERRUPTS - VALUE IGNORED)
A/D.BASE.ADDRESS 6 + W! (SELECT THE PROPER ADDRESS AND WRITE

: INT.DISABLE (n - DISABLE ALL INTERRUPTS - VALUE IGNORED
A/D.BASE.ADDRESS 8 + W! (SELECT PROPER ADDRESS AND WRITE

: CONVERT.DONE? (CH# - n CHECK BIT IN ANALOG.READ FOR CIP CLEARED
BEGIN

ANALOG.READ (GET VALUE ON STACK
8000 AND (AND WITH MOST SIGNIFICANT BIT
8000 = NOT (TEST IF HI BIT NOT CLEARED YET

UNTIL (CHECK UPPER BIT TILL NOT SET
ANALOG.READ (READ FINAL VALUE)
0FFF AND (MASK OUT BITS 12-15

DECIMAL

0 CONSTANT CHANNEL.ZERO
1 CONSTANT CHANNEL.ONE
2 CONSTANT CHANNEL.TWO
3 CONSTANT CHANNEL.THREE

4 CONSTANT CHANNEL.FOUR
5 CONSTANT CHANNEL.FIVE
6 CONSTANT CHANNEL.SIX
7 CONSTANT CHANNEL.SEVEN
8 CONSTANT CHANNEL.EIGHT
9 CONSTANT CHANNEL.NINE
10 CONSTANT CHANNEL.TEN

: READ.IT (n - n CHANNEL NUMBER SELECTED, VALUE OUT
SELECT. CHANNEL
CONVERT.DONE? . CR

: TEST (n - CHANNEL NUMBER
BEGIN

DUP
SELECT CHANNEL
CONVERT. DONE?

CR
?TERMINAL

UNTIL
DROP

ARRAY DEFINITION WORDS
ARRAY SIZE LIMITED TO AVAILABLE VARIABLE SPACE IN MEMORY
LAST UPDATE: 12/28/88)
ARRAY VARIABLES HOLD THE BASE ADDRESS OF EACH ARRAY

VARIABLE ARRAY. CH. 0
VARIABLE ARRAY. CH. 1
VARIABLE ARRAY. CH. 2
VARIABLE ARRAY. CH. 3
VARIABLE ARRAY. CH. 4
VARIABLE ARRAY. CH. 5
VARIABLE ARRAY. CH. 6
VARIABLE ARRAY. CH. 7
VARIABLE ARRAY. CH. 8
VARIABLE ARRAY. CH. 9
VARIABLE ARRAY. CH. 10

VARIABLE FILTER DEPTH
11 FILTER DEPTH

VARIABLE VTABLE
FILTER DEPTH @ 2 * 4 -VALLOT

VARIABLE FIP ARRAY-SIZE
6 FIP ARRAY-SIZE !

VARIABLE OUT ARRAY SIZE
FIP ARRAY-SIZE @ 11 + OUTARRAY SIZE

VARIABLE VFIP1
OUT ARRAYSIZE @ 1+ 2 * 4 - VALLOT

VARIABLE VFIP2SOUTARRAYSIZE @ 1+ 2 * 4 - VALLOT

VARIABLE FLIP FLOP
0 FLIP_FLOP !

VARIABLE AOICHECKSUM
0 AOICHECKSUM !

CHANNEL.ZERO CONSTANT ALTITUDESET CHAN
CHANNEL.ONE CONSTANT HEADING SET CHAN
CHANNEL.FOUR CONSTANT ALTITUDE CHAN
CHANNEL.FIVE CONSTANT AIR SPEEDCHAN
CHANNEL.SIX CONSTANT PITCH CHAN
CHANNEL.SEVEN CONSTANT ROLL CHAN
CHANNEL.EIGHT CONSTANT Y CHAN
CHANNEL.NINE CONSTANT X CHAN
CHANNEL.TEN CONSTANT ZCHAN

0 CONSTANT AIR SPEED
1 CONSTANT ATTACK ANGLE
2 CONSTANT VERTICAL VELOCITY
3 CONSTANT HEADINGDEVIATION
4 CONSTANT ROLL
5 CONSTANT PITCH
6 CONSTANT ALTITUDEDEVIATION

: VBUBBLE { TOP I TEMP -- } (BUBBLE SORT VTABLE
FILTER DEPTH @ TOP 1+
DO

VTABLE I 2 * + W@
VTABLE TOP 2 * + W@ <* IF

VTABLE TOP 2 * + W@ -> TEMP
VTABLE I 2 * + W@ VTABLE TOP 2 * + W!
TEMP VTABLE I 2 * + W!

THEN
LOOP ;

: VMEDIAN FILTER (-- N) (GET THE MEDIAN OF VTABLE
FILTERDEPTH @ 1- 0
DO

I VBUBBLE
LOOP
VTABLE FILTER DEPTH @ 2 / 2 * + W@

: VTABLEFILL (--) (FILL VTABLE WITH KEYBOARD VALUES
FILTER DEPTH @ 0
DO

KEY VTABLE I 2 * + W!
LOOP ;

: VTABLEOUT (OUTPUT THE VTABLE
FILTER DEPTH @ 0
DO

VTABLE I 2 * + W@
LOOP
CR ;

* WHICH.ARRAY (LOC -- ADDR) (STORES AT CORRECT ARRAY ADDRESS
FLIPFLOP @ 0 =

IFSELSEVFIPl
ELSE

VFIP2
THEN
SWAP 2 * + W!

: GET.WHICH.ARRAY (LOC -- N) (FETCHES FROM CORRECT ARRAY
FLIP FLOP @ 0 =
IF

VFIPI
ELSE

VFIP2
THEN
SWAP 2 * + W@

: AOI.WHICH.ARRAY (LOC -- N N) (FETCHES FROM CORRECT ARRAY
FLIP FLOP @ 0 =
IF

VFIP1 (GET ADDRESS OF VFIP1
ELSE

VFIP2 (GET ADDRESS OF VFIP2
THEN
SWAP 2 * + (GENERATE OFFSET ADDRESS
DUP (DUPLICATE ADDRESS)
C@ SWAP 1+ C@ (PUT HIGH AND LOW BYTE ONTO STACK

: GET ALTITUDE SET (--

FILTER DEPTH @ 0 DO (GET FILTER DEPTH SAMPLES
ALTITUMESETCHAN SELECT.CHANNEL
CONVERT. DONE?
VTABLE I 2 * + W!

LOOP
VMEDIAN FILTER
2048 SWAP

I>F (PUT HEADING ONTO FLOATING POINT STACK
" 6.202148438" FNUMBER? (PUT COUNTS PER VOLT INTO FP STACK
DROP (DROP RESULT FROM FNUMBER?)
F* (MULTIPLY TO GET THOUSANDS OF FEET
F>I (CONVERT RESULT TO INTEGER

FP

GET RAW AIR SPEED (-- AIR SPEED
FILTERDEPTH @ 0 DO (GET FILTERDEPTH SAMPLES
AIR SPEED CHAN SELECT.CHANNEL
CONVERT. DONE?
VTABLE I 2 * + W!

LOOP
VMEDIAN FILTER

* :GET AIRSPEED (--

GET RAW AIR SPEED
6427- - -
DUP 2048 > IF DROP 2048 THEN
DUP 0 < IF DROP 0 THEN
I>F 409.6 F/ 5.0 FSWAP F-
PSI. TO. AIRSPEED. LOOKUP
I>F 12.41 F* F>I
AIR SPEED WHICH.ARRAY

: GET ATTACK ANGLE
0 ATTACKANGLE WHICH.ARRAY

VARIABLE VERTICAL VELOCITY SECONDS
VARIABLE VERTICAL VELOCITY FLAG
VARIABLE VERTICAL VELOCITYALTITUDE
0 VERTICAL VELOCITY FLAG !
VARIABLE CURRENT VERTICAL VELOCITY
0 CURRENT VERTICAL VELOCITY

: GET VERTICAL VELOCITY
VERTICAL VELOCITYFLAG @ 0 =
IF

OUT SECONDS @ 5 +
VERTICAL VELOCITYSECONDS
1 VERTICAL VELOCITYFLAG
FILTER DEPTH @ 0
DO (GET FILTER DEPTH SAMPLES

ALTITUDE CHAN SELECT.CHANNEL
CONVERT. DONE?
VTABLE I 2 * + W!

LOOP
VMEDIANFILTER
PSI.TO.ALTLOOKUP
VERTICAL VELOCITYALTITUDE

ELSE
OUT SECONDS @
VERTICAL VELOCITY SECONDS @

IF
FILTER DEPTH @ 0
DO (GET FILTER DEPTH SAMPLES

ALTITUDE CHAN SELECT.CHANNEL
CONVERT. DONE?
VTABLE I 2 * + W!

LOOP
VMEDIANFILTER
PSI.TO.ALT LOOKUP
VERTICAL VELOCITY ALTITUDE @

I>F
12.0 F* F>I
DUP
2048 >
IF

DROP
2048

THEN
O DUP

-2048 <
IF

DROP
-2048

THEN
2048 +
CURRENT VERTICAL VELOCITY
0 VERTICAL VELOCITYFLAG

THEN
THEN
CURRENT VERTICAL VELOCITY @
VERTICAL VELOCITY WHICH.ARRAY

GET HEADING SET (--

FILTER DEPTH @ 0
DO 7 GE"- FILTER DEPTH SAMPLES

HEADING .,T CHAN SELECT.CHANNFL
CONVERT. DONE?
VTABLE I 2 * + W!

LOOP
VMEDIANFILTER
2048 SWAP

I>F (PUT HEADING ONTO FLOATING POINT STACK
" 0.17578125" FNUMBER? (PUT COUNTS PER VOLTS INTO FP STACK
DROP (DROP RESULT FROM FNUNBER?
F* (MULTIPLY TO GET DEGREES)
F>I (CONVERT RESULT TO INTEGER

GET X (-- N
FILTER DEPTH @ 0 DO (GET FILTER DEPTH SAMPLES

X CHAN SELECT.CHANNEL
CONVERT. DONE?
VTABLE I 2 * + W!

LOOP
VMEDIAN FILTER
DUP I>F
2048 <
IF

" 204.8" FNUMBER? DROP F1
" 10.0" FNUMBER? DROP F-

ELSE
" 2048.0" FNUMBER? DROP F-
" 204.8" FNUMBER? DROP F1

THEN
MX F!

GET Y (--N)
FILTER DEPTH @ 0 DO (GET FILTER DEPTH SAMPLES

Y CHAN SELECT.CHANNEL
CONVERT. DONE?
VTABLE I 2 * + W!

LOOP

VMEDIAN FILTER
DUP I>F
2048 <
IF

" 204.8" FNUMBER? DROP F/
" 10.0" FNUMBER? DROP F-

ELSE
"2048.0" FNUMBER? DROP F-
"204.8" FNUMBER? DROP F1

THEN
MY F!

GET Z (-- N
FILTER DEPTH @ 0 DO (GET FILTER DEPTH SAMPLES

Z CHAN SELECT.CHANNEL
CONVERT. DONE?
VTABLE I 2 * + W!

LOOP
VMEDIANFILTER
DUP I>F
2048 <
IF

" 204.8" FNUMBER? DROP F/
" 10.0" FNUMBER? DROP F-

ELSE
" 2048.0" FNUMBER? DROP F-
" 204.8" FNUMBER? DROP F/

THEN
MZ F!

FP

VARIABLE STATIC ROLL
VARIABLE MAX LEFT ROLL
VARIABLE MAX RIGHT ROLL
FVARIABLE LEFT DEGREES
FVARIABLE RIGHTDEGREES

2.7 (STATIC ROLL VOLTAGE
204.8 F* 2048.0 F+ F>I (SCALE ON 0-4096 OR -10 TO 10V
STATIC ROLL !
0.0 (MAX BANK LEFT VOLTAGE 0 V
204.8 F* 2048.0 F+ F>I (SCALE ON 0-4096 OR -10 TO 10V
MAX LEFTROLL !
7.4 (MAX RIGHT ROLL VOLTAGE
204.8 F* 2048.0 F+ F>I (SCALE ON 0-4096 OR -10V TO 10V
MAXRIGHTROLL

STATIC ROLL @
MAX LEFT ROLL @
- I>F 2048.0 FSWAP F/
LEFTDEGREES F! (GET SCALING IN DEGREES

MAX RIGHT ROLL @
STATIC ROLL @
- I>F 2048.0 FSWAP F/

RIGHTDEGREES F! (GET SCALING IN DEGREES

GET ROLL (--
FILTER DEPTH @ 0
DO (GET FILTER DEPTH SAMPLES

ROLL CHAN SELECT.CHANNEL
CONVERT.DONE?
VTABLE I 2 * + W!

LOOP
VMEDIAN FILTER
DUP
STATICROLL @ -
0<
IF

MAXLEFTROLL @ - I>F
LEFTDEGREES F@ F*
F>I

ELSE
STATIC ROLL @ - I>F
RIGHTDEGREES F@ F*
F>I
2048 +

THEN
DUP
ROLL WHICH.ARRAY
DUP
2048 >
IF

2048 -

THEN
I>F
" 29.25714286" FNUMBER? DROP
F/
F>I
ROLL GET.WHICH.ARRAY
2048 <
IF

DUP
0>
IF

70 SWAP -
THEN

ELSE
-1*

THEN

VARIABLE STATIC PITCH
VARIABLE MAX DIVE PITCH
VARIABLE MAX-CLIMB PITCH
FVARIABLE DIVE DEGREES
FVARIABLE CLIMB DEGREES

2.73 (STATIC PITCH VOLTAGE
204.8 F* 2048.0 F+ F>I (SCALE ON 0-4096 OR -10 TO 1OV)
STATIC PITCH !

* 6.8 (MAX PITCH DIVE VOLTAGE
204.8 F* 2048.0 F+ F>I (SCALE ON 0-4096 OR -10 TO 10V

MAX DIVEPITCH
0.0
204.8 F* 2048.0 F+ F>I (SCALE ON 0-4096 OR -10 TO 10V
MAXCLIMBPITCH

STATIC PITCH @
MAX CLIMB PITCH @
- I>F 2048.0 FSWAP F1
CLIMBDEGREES F! (GET SCALING IN DEGREES

MAX DIVE PITCH @
STATIC PITCH @
- I>F 2048.0 FSWAP F/
DIVEDEGREES F! (GET SCALING IN DEGREES

: GET PITCH (--)
FILTER DEPTH @ 0
DO (GET FILTER DEPTH SAMPLES

PITCH CHAN SELECT.CHANNEL
CONVERT. DONE?
VTABLE I 2 * + W!

LOOP
VMEDIANFILTER
DUP
STATICPITCH @ -
0<
IF

MAX CLIMB PITCH @ - I>F
CLIMBDEGREES F@ F*
F>I

ELSE
STATICPITCH @ - I>F
DIVEDEGREES F@ F*
F>I
2048 +

THEN
DUP
PITCH WHICH.ARRAY
DUP
2048 >
IF

2048 -
THEN
I>F
" 37.23636364" FNUMBER? DROP
F/
F>I
PITCH GET.WHICH.ARRAY
2048 <
IF

DUP
0>
IF

55 -
THEN

THEN

INT

0GET HEADING-DEVIATION RP N
GET X
GET-Y
GET-Z
GET HEADING
GET HEADING-SET

360 MO)D
180 SWAP -
HEADINGDEVIATION WHICH.ARRAY

GET ALTITUDE (-
FILTER DEPTH @ 0
DO (GET FILTERDEPTH SAMPLES

ALTITUDECHAN SELECT. CHANNEL
CONVERT. DONE?
VTABLE I 2 *+ W!

LOOP
VMED IANFILTER

VARIABLE PSI .TO. ALT. PTR

FP

GET.PSI.TO.ALT.OFFSET
-1 PSI.TO.ALT.PTR
BEGIN

DUP
PSI.TO.ALT.PTR @
1+ DUP
PSI.TO.ALT.PTR
PSI.TO.ALT W@

UNTIL
DROP
PSI.TO.ALT.PTR @ 1-
GET ALTITUDE
20478 SWAP - I>F
136.53333 F1 2048 /15 PSI =136.5333

68.94752 F* (PSI TO P,MB
10.0 F*
F>I
5900 -

PSI.TO.ALT.OFFSET

INT

*GET ALTITUDEDEVIATION (-
GET AkLTITUDESET
GETALTITUDE7

* DUP

2048 >* IFDI0
IFDROP

2048
THEN
DUP
-2048 <
IF

DROP
-2048

THEN
2048 +
ALTITUDE DEVIATION WHICH.ARRAY

: PUT ARRAY (LOC --
FIP ARRAY SIZE @ 1+ + WHICH.ARRAY

: ACQUIRE FIP (--

FLIPFLOP @ 0 =

IF
1 FLIP FLOP

ELSE
0 FLIPFLOP

THEN
GET ROLL

DUP ROLLCHAN PUT ARRAY
GET PITCH

DUP PITCH CHAN PUT ARRAY
GET HEADINGDEVIATION
GETALTITUDE DEVIATION
GET AIR SPEED
GET ATTACK ANGLE
GET VERTICAL VELOCITY
GET ALTITUDE SET

ALTITUDE SET CHAN PUT ARRAY
GET HEADING SET

HEADING SET CHAN PUT ARRAY
GET ALTITUDE -

ALTITUDE CHAN PUT ARRAY
GET RAW AIR SPEED -

AYR SPEED-CHAN PUT ARRAY
MX F@ F>I X CHAN PUT ARRAY
MY F@ F>I Y CHAN PUT ARRAY
MZ F@ F>I ZCHAN PUT ARRAY
0 CHANNEL.TWO PUT ARRAY
0 CHANNEL.THREE PUT ARRAY

SET UP A SEPARATE USER AREA FOR AN EXTRA TERMINAL LINE
REFER TO MANUALS ON TERMINAL, BUILD, AND ACTIVATE
1/1/89 SM)

1 CONSTANT CHANNEL.1
* 1000 2000 TERMINAL FIPOUT (THE TERMINAL

CHANNEL.1 FIPOUT BUILD (SET UP USER AREA FOR CHANNEL 1)

VARIABLE AKEY

FIP AOI TASK (--

BEGIN -
AKEY #1 EXPECT (WAIT FOR A SINGLE KEY PRESS
AKEY @ 16777216 / (SHIFT RIGHT TO GET 8 BIT CHAR VALUE
2=
IF

0 AOICHECKSUM
0 1 <# HOLD #> TYPE (OUTPUT SOH
0
FIP ARRAY-SIZE @ 1+ 0
DO

I AOI.WHICH.ARRAY
2DUP (DUPLICATE HIGH AND LOW BYTES
AOI CHECKSUM @ (GET VALUE OF AOI CHECKSUM)
+ +-AOICHECKSUM ! (ADD HIGH AND LOW BYTES TO AOICHECKSUM

LOOP
AOI CHECKSUM @ 65280 AND 256 /
AOI-CHECKSUM @ 255 AND
<# HOLD HOLD (OUTPUT AIRSPEED

HOLD HOLD (OUTPU. ANGLE OF ATTACK - NOT USED
HOLD HOLD (OUTPUT VERTICAL VELOCITY
HOLD HOLD (OUTPUT HEADING DEVIATION
HOLD HOLD (OUTPUT ROLL ANGLE
HOLD HOLD (OUTPUT PITCH ANGLE
HOLD HOLD (OUTPUT ALTITUDE DEVIATION
HOLD HOLD #> TYPE (OUTPUT CHECKSUM

0 3 <# HOLD #> TYPE (OUTPUT ETX
THEN

AGAIN
; (LOOP FOREVER

FIP OUT TASK (--

ACTIVATE
ACQUIREFIP
BEGIN

OUT DELAY
OUT ARRAYSIZE @ 1+ 0
DO

I GET.WHICH.ARRAY
LOOP
CR
ACQUIREFIP

AGAIN
; (LOOP UNTIL KEYPRESS

FP

0.0 PSI.TO.AIRSPEED.GEN
.003598 PSI.TO.AIRSPEED.GEN
.013332 PSI.TO.AIRSPEED.GEN
.030262 PSI.TO.AIRSPEED.GEN
.053964 PSI.TO.AIRSPEED.GEN
.084437 PSI.TO.AIRSPEED.GEN
.122106 PSI. TO.AIRSPEED. GEN

.165911 PSI. TO.AIRSPEED .GEN.. 216912 PSI.TO.AIRSPEED.GEN

.274050 PSI.TO.AIRSPEED.GEN

.338383 PSI.TO.AIRSPEED.GEN

.409488 PSI.TO.AIRSPEED.GEN

.487365 PSI.TO.AIRSPEED.GEN

.571802 PSI .TO.AIRSPEED .GEN

.663646 PSI. TO.AIRSPEED .GEN

.761415 PSI.TO.AIRSPEED.GEN

.866591 PSI.TO.AIRSPEED.GEN

.978327 PSI .TO.AIRSPEED.GEN
1.09684 PSI.TO.AIRSPEED.GEN
1.22233 PSI.TO.AIRSPEED.GEN
1.35438 PSI .TO.AIRSPEED.GEN
1.49363 PSI.TO.AIRSPEED.GEN
1.63880 PSI.TO.AIP.SPEED.GEN
1.79159 PSI.TO.AIRSPEED.GEN
1.95073 PSI.TO.AIRSPEED.GEN
2.11685 PSI.TO.AIRSPEED.GEN
2.28954 PSI.TO.AIRSPEED.GEN
2.46899 PSI.TO.AIRSPEED.GEN
2.65585 PSI. TO.AIP.SPEED .GEN
2.84843 PSI.TO.AIRSPEED.GEN
3.04883 PSI.TO.AIRSPEED.GEN
3.25559 PSI.TO.AIRSPEED.GEN
3.46890 PSI.TO.AIRSPEED.GEN
3.68941 PSI.TO.AIRSPEED.GEN
3.91648 PSI.TO.AIRSPEED.GEN
4.14990 PSI.TO.AIRSPEED.GEN
4.39115 PSI.TO.AIRSPEED.GEN
4.63896 PSI.TO.AIRSPEED.GEN
4.89248 PSI .TO.AIRSPEED. GEN
5.15362 PSI.TO.AIRSPEED.GEN
5.42154 PSI .TO.AIRSPEED.GEN
5.69686 PSI.TO.AIRSPEED.GEN
5.97831 PSI.TO.AIRSPEED.GEN
6.26675 PSI.TO.AIRSPEED.GEN
6.56175 PSI.TO.AIRSPEED.GEN
6.86374 PSI.TO.AIRSPEED.GEN
7.17249 PSI.TO.AIRSPEED.GEN
7.48781 PSI.TO.AIRSPEED.GEN
7.81032 PSI. TO.AIRSPEED. GEN
8.140uJ PSI.TO.AIRSPEED.GEN
8.47587 PSI.TO.AIP.SPEED.GEN
8.81891 PSI.TO.AIRSPEED.GEN
9.16893 PSI.TO.AIRSPEED.GEN
9.52552 PSI. TO.AIRSPEED .GEM
9.88908 PSI.TO.AIRSPEED.GEN
10.2590 PSI.TO.AIRSPEED.GEN
10.6359 PSI.TO.AIRSPEED.GEN
11.0202 PSI. TO.AIRSPEED. GEN
11.4115 PSI.TO.AIRSPEED.GEN
11.8083 PSI.TO.AIRSPEED.GEN
12.2129 PSI.TO.AIRSPEED.GEN
12.6241 PSI .TO.AIRSPEED .GEN
13.0431 PSI.TO.AIRSPEED.GEN.13.4678 PSI.TO.AIRSPEED.GEN
13.8995 PSI.TO.AIRSPEED.GEN

14.3384 PSI.TO.AIRSPEED.GEN.14.7845 PSI.TO.AIRSPEED.GEN
15.2368 PSI.TO.AIRSPEED.GEN
15.6962 PSI.TO.AIRSPEED.GEN
16.1624 PSI.TO.AIRSPEED.GEN
16.6352 PSI.TO.AIRSPEED.GEN
17.1158 PSI.TO.AIRSPEED.GEN
17.6029 PSI.TO.AIRSPEED.GEN
18.0964 PSI.TO.AIRSPEED.GEN
18. 5971 PSI.TO.AIRSPEED.GEN
19.1046 PSI.TO.AIRSPEED.GEN
19. 6201 PSI.TO.AIRSPEED.GEN
20.1409 PSI.TO.AIRSPEED.GEN
20. 6691 PSI.TO.AIRSPEED.GEN
21.2045 PSI.TO.AIRSPEED.GEN
21.7471 PSI.TO.AIRSPEED.GEN
22.2963 PSI.TO.AIRSPEED.GEN
22.8522 PSI.TO.AIRSPEED.GEN
23.4151 PSI.TO.AIRSPEED.GEN
23.9846 PSI.TO.AIRSPEED.GEN
24.5619 PSI.TO.AIRSPEED.GEN
25.1459 PSI.TO.AIRSPEED.GEN
25.7364 PSI.TO.AIRSPEED.GEN
26. 3338 PSI.TO.AIRSPEED.GEN
26. 9386 PSI.TO.AIRSPEED.GEN
27.5500 PSI.TO.AIRSPEED.GEN
28.1690 PSI.TO.AIRSPEED.GEN
28.7941 PSI.TO.AIRSPEED.GEN
29.4268 PSI.TO.AIRSPEED.GEN
30.0664 PSI.TO.AIRSPEED.GEN
30.7129 PSI.TC.AIRSPEED.GEN
31.3664 PSI. TO.AIP.SPEED. GEN
32.0266 PSI.TO.AIRSPEED.GEN
32. 6936 PSI.TO.AIRSPEED.GEN
33.3685 PSI.TO.AIRSPEED.GEN
34.0493 PSI.TO.AIRSPEED.GEN
34.7379 PSI.TO.AIRSPEED.GEN
35. 4333 PSI .TO.AIRSPEED.GEN
36.1357 PSI.TO.AIRSPEED.GEN
36.8450 PSI.TO.AIRSPEED.GEN
37. 5612 PSI .TO.AIRSPEED.GEN
38.2853 PSI.TO.AIRSPEED.GEN
39.0152 PSI.TO.AIRSPEED.GEN
39.7529 PSI. TO.AIRSPEED. GEN
40.4976 PSI.TO.AIRSPEED.GEN
41.2493 PSI.TO.AIP.SPEED.GEN
42.0078 PSI.TO.AIRSPEED.GEN
42.7740 PSI.TO.AIRSPEED.GEN
43.5467 PSI.TO.AIRSPEED.GEN
44.3269 PSI. TO.AIRSPEED .GEN
45.1131 PSI.TO.AIRSPEED.GEN
45. 9073 PSI.TO.AIRSPEED.GEN
46.7085 PSI.TO.AIRSPEED.GEN
47.5167 PSI.TO.AIRSPEED.GEN
48.3325 PSI.TO.AIRSPEED.GEN
49.1544 PSI.TO.AIRSPEED.GEN.49.9844 PSI.TO.AIRSPEED.GEN
50.8212 PSI .TO.AIRSPEED.GEN

51. 6643 PSI.TO.AIRSPEED.GEN.52.5150 PSI.TO.AIPSPEED.GEN
53. 3737 PSI .TO.AIRSPEED.GEN
54.2386 PSI.TO.AIRSPEED.GEN
55.1107 PSI.TO.AIRSPEED.GEN
55.9904 PSI.TO.AIRSPEED.GEN
56.8774 PSI.TO.AIRSPEED.GEN
57.7710 PSI.TO.AIRSPEED.GEN
58.6717 PSI. TO.AIRSPEED .GEN
59.5800 PSI .TO.AIRSPEED. GEN
60.4952 PSI .TO.AIRSPEED.GEN
61.4175 PSI .TO.AIRSPEED.GEN
62. 3471 PSI .TO.AIRSPEED.GEN
63.2844 PSI.TO.AIRSPEED.GEN
64.2282 PSI.TO.AIRSPEED.GEN
65.1797 PSI. TO.AIRSPEED .GEN
66.1381 PSI.TO.AIRSPEED.GEN
67.1035 PSI.TO.AIRSPEED.GEN
68.0762 PSI.TO.AIRSPEED.GEN
69.0566 PSI.TO.AIRSPEED.GEN
70.0447 PSI.TO.AIRSPEED.GEN
71.0391 PSI.TO.AIRSPEED.GEN
72.0411 PSI .TO.AIRSPEED.GEN
73.0501 PSI. TO.AIRSPEED .GEN
74.0665 PSI.TO.AIP.SPEED.GEN
74.0899 PSI.TO.AIRSPEED.GEN
76.1212 PSI.TO.AIRSPEED.GEN
77.1598 PSI.TO.AIRSPEED.GEN
78.2056 PSI.TO.AIRSPEED.GEN
79.2576 PSI.TO.AIRSPEED.GEN
80.3187 PSI.TO.AIRSPEED.GEN

82. 4607 PSI.TO.AIRSPEED.GEN
83.5434 PSI.TO.AIRSPEED.GEN
84. 6630 PSI.TO.AIRSPEED.GEN
85.7294 PSI.TO.AIRSPEED.GEN
86. 8337 PSI.TO.AIRSPEED.GEN
87.9462 PSI.TO.AIRSPEED.GEN
89.0650 PSI.TO.AIRSPEED.GEN
90.1911 PSI. TO.AIRSPEED .GEN
91.3253 PSI.TO.AIRSPEED.GEN
92.4658 PSI. TO.AIRSPEED .GEN
93. 6147 PSI.TO.AIRSPEED.GEN
94.7705 PSI.TO.AIRSPEED.GEN
95. 9340 PSI.TO.AIRSPEED.GEN
97.1054 PSI.TO.AIRSPEED.GEN
98. 2835 PSI.TO.AIRSPEED.GEN
99.4696 PSI.TO.AIRSPEED.GEN
100.662 PSI.TO.AIRSPEED.GEN
101.863 PSI.TO.AIRSPEED.GEN
103.071 PSI.TO.AIRSPEED.GEN
104.287 PSI.TO.AIRSPEED.GEN
105.510 PSI. TO.AIRSPEED .GEN
106.741 PSI.TO.AIRSPEED.GEN
107.978 PSI.TO.AIRSPEED.GEN
109.224 PST.TO.ATRSPEED.GEN.110.478 PSI.TO.AIRSPEED.GEN
111.738 PSI.TO.AIRSPEED.GEN

113.006 PSI.TO.AIRSPEED.GEN.114.282 PSI.TO.AIRSPEED.GEN
115.565 PSI.TO.AIRSPEED.GEN
116.856 PSI.TO.AIRSPEED.GEN
118.155 PSI.TO.AIRSPEED.GEN
119.460 PSI.TO.AIRSPEED.GEN
120.774 PSI.TO.AIRSPEED.GEN
122.096 PSI.TO.AIRSPEED.GEN
123.424 PSI.TO.AIRSPEED.GEN
124.761 PSI.TO.AIRSPEED.GEN
126.105 PSI.TO.AIRSPEED.GEN
127. 456 PSI.TO.AIRSPEED.GEN
128.816 PSI.TO.AIRSPEED.GEN
130.183 PSI.TO.AIRSPEED.GEN
130. 557 PSI.TO.AIRSPEED.GEN
132.939 PSI.TO.AIRSPEED.GEN
134. 330 PSI.TO.AIRSPEED.GEN
135.727 PSI.TO.AIRSPEED.GEN
137.133 PSI.TO.AIRSPEED.GEN
138.546 PSI .TO.AIRSPEED .GEN
139. 967 PSI.TO.AIRSPEED.GEN
141. 396 PSI.TO.AIRSPEED.GEN
142.832 PSI.TO.AIRSPEED.GEN
144.276 PSI.TO.AIRSPEED.GEN
145.728 PSI.TO.AIRSPEED.GEN
147.187 PSI.TO.AIRSPEED.GEN
148. 655 PSI.TO.AIRSPEED.GEN
150.130 PSI.TO.AIRSPEED.GEN
151.613 PSI.TO.AIRSPEED.GEN. ~153.103 PSI.TO.AIRSPEE.D.GEN
154.602 PSI .TO.AIRSPEED .GEN
156.108 PSI.TO.AIRSPEED.GEN
157. 623 PSI.TO.AIRSPEED.GEN
159.145 PSI.TO.AIRSPEED.GEN
160.675 PSI.TO.AIRSPEED.GEN
162.213 PSI.TO.AIRSPEED.GEN
163.759 PSI.TO.AIRSPEED.GEN
165. 312 PSI.TO.AIRSPEED.GEN
166.874 PSI.TO.AIRSPEED.GEN
168.443 PSI.TO.AIRSPEED.GEN
170.020 PSI.TO.AIRSPEED.GEN
171.606 PSI. TO.AIRSPEED .GEN
173.199 PSI.TO.AIRSPEED.GEN
174.800 PSI.TO.AIRSPEED.GEN
176.410 PSI.TO.AIRSPEED.GEN
178.027 PSI.TO.AIRSPEED.GEN
179.652 PSI.TO.AIRSPEED.GEN
181.285 PSI.TO.AIRSPEED.GEN
182.927 PSI. TO.AIRSPEED .GEN
184.576 PSI.TO.AIRSPEED.GEN
186.233 PSI.TO.AIRSPEED.GEN
187.898 PSI.TO.AIRSPEED.GEN
189. 572 PSI.TO.AIRSPEED.GEN
191.252 PSI.TO.AIRSPEED.GEN
192.942 PSI .TO.AIRSPEED.GEN
194. 640 PSI.TO.AIRSPEED.GENO196.346 PSI.TO.AIRSPEED.GEN
198.059 PSI.TO.AIRSPEED.GEN

199.781 PSI.TO.AIRSPEED.GEN. 201.511 PSI .TO.AIRSPEED.GEN
203.250 PSI.TO.AIRSPEED.GEN
204.996 PSI. TO.AIRSPEED .GEN
206.750 PSI.TO.AIRSPEED.GEN
208.513 PSI. TO.AIRSPEED .GEN
210.284 PSI .TO.AIRSPEED.GEN
212.064 PSI.TO.AIRSPEED.GEN
213.851 PSI.TO.AIRSPEED.GEN
215.647 PSI.TO.AIRSPEED.GEN
217.451 PSI .TO.AIRSPEED.GEN
219.262 PSI.TO.AIRSPEED.GEN
221.083 PSI.TO.AIRSPEED.GEN
222. 912 PSI.TO.AIRSPEED.GEN
224.749 PSI.TO.AIP.SPEED.GEN
226.594 PSI. TO.AIRSPEED .GEN
228.448 PSI.TO.AIRSPEED.GEN
230.310 PSI.TO.AIRSPEED.GEN
232.181 PSI.TO.AIRSPEED.GEN
234.059 PSI.TO.AIRSPEED.GEN
235. 946 PSI.TO.AIRSPEED.GEN
237.841 PSI .TO.AIRSPEED. GEN
239.746 PSI.TO.AIRSPEED.GEN
241. 657 PSI.TO.AIRSPEED.GEN
243.578 PSI.TO.AIRSPEED.GEN
245.507 PSI.TO.AIRSPEED.GEN
247.445 PSI.TO.AIRSPEED.GEN
249.391 PSI.TO.AIRSPEED.GEN
251.345 PSI. TO.AIRSPEED .GEN
252.305 PSI.TO.AIRSPEED.GEN
255.280 PSI.TO.AIRSPEED.GEN
257.260 PSI.TO.AIRSPEED.GEN
259.249 PSI.TO.AIRSPEED.GEN
261.246 PSI.TO.AIRSPEED.GEN
263.252 PSI.TO.AIRSPEED.GEN
265.266 PSI.TO.AIRSPEED.GEN
267.289 PSI.TO.AIRSPEED.GEN
269.320 PSI .TO.AIRSPEED.GEN
271.361 PSI. TO.AIRSPEED .GEN
273. 409 PSI.TO.AIP.SPEED.GEN
275.467 PSI.TO.AIRSPEED.GEN
277. 533 PSI.TO.AIRSPEED.GEN
279.607 PSI.TO.AIRSPEED.GEN
281. 691 PSI.TO.AIRSPEED.GEN
283.782 PSI. TO.AIRSPEED .GEN
285.884 PSI. TO.AIRSPEED .GEN
287.993 PSI.TO.AIRSPEED.GEN
290.111 PSI.TO.AIRSPEED.GEN
292.238 PSI.TO.AIRSPEED.GEN
295. 374 PSI.TO.AIRSPEED.GEN
296.519 PSI.TO.AIRSPEED.GEN
298. 672 PSI.TO.AIRSPEED.GEN
300.835 PSI.TO.AIRSPEED.GEN
303.006 PSI.TO.AIRSPEED.GEN
305.186 PSI.TO.AIRSPEED.GEN
307. 374 PSI. TO.AIRSPEED .GEN. 309.572 PSI. TO.AIRSPEED .GEN
311.779 PSI.TO.AIRSPEED.GEN

313. 994 PSI.TO.AIRSPEED.GENO316.218 PSI.TO.AIRSPEED.GEN
318.542 PSI.TO.AIRSPEED.GEN
320. 694 PSI.TO.AIRSPEED.GEN
322. 945 PSI.TO.AIRSPEED.GEN
325.205 PSI.TO.AIRSPEED.GEN
327.474 PSI. TO.AIRSPEED .GEN
329.753 PSI.TO.AIRSPEED.GEN
332.040 PSI.TO.AIRSPEED.GEN
334. 336 PSI.TO.AIRSPEED.GEN
336. 641 PSI.TO.AIRSPEED.GEN
338. 956 PSI.TO.AIRSPEED.GEN
341.280 PSI.TO.AIRSPEED.GEN
343. 612 PSI.TO.AIRSPEED.GEN
345.954 PSI .TO.AIRSPEED.GEN
348.302 PSI. TO.AIRSPEED .GEN
350.665 PSI. TO.AIRSPEED .GEN
353.034 PSI.TO.AIRSPEED.GEN
355.413 PSI.TO.AIRSPEED.GEN
357.801 PSI .TO.AIRSPEED.GEN
360.197 PSI.TO.AIRSPEED.GEN
362. 604 PSI.TO.AIRSPEED.GEN
365.019 PSI.TO.AIRSPEED.GEN
367.443 PSI.TO.AIRSPEED.GEN
369.887 PSI.TO.AIRSPEED.GEN
372.320 PSI .TO.AIRSPEED. GEN
374.773 PSI.TO.AIRSPEED.GEN
377.235 PSI. TO.AIRSPEED .GEN
379.706 PSI.TO.AIRSPEED.GEN
382.187 PSI.TO.AIRSPEED.GEN
384. 677 PSI.TO.AIRSPEED.GEN
387.177 PSI.TO.AIRSPEED.GEN
389.685 PSI.TO.AIRSPEED.GEN
392.203 PSI.TO.AIRSPEED.GEN

INT

PSI.TO.AIJTGEN
X GET.PS-I.TO.ALT.OFFSET -- X IS CURRENT ALTITUDE
FIP OUT FIP OUT TASK

Appendix D - Vertical Gyroscope

0

Appendix D - Humphrey Inc. Data

Ilug

z- 01W AI
Iz

lo a - -c

z Go

9 15

~ - 4

N 4 c eb

1! 9 I 9 !9 :

3p 0 T - - - -'D wa -hooo

LL'

o _ o

Ix .. cL 'A

N~ o c O
I ,, lcc

ca. w C-

aF in a L a-

- I
- 0 C La3i

is~0 .

00~ 0.C' 000 0K wCJC0 0 0 0 W' ~ ~ I
- !' IR U,9 C ! C! 11 aCtm CJi'R IUC CDCOR DnOC R

CV In In en V 0 4D r- co.

"-Si-

- 4(-0-c0

LI<-'N.-

to

+1w _ _ _ _ _ _ _ _ _

01
Lf01

0 In
'A

C.).

00
(n 75 b-

0WI-

i..

-jj

2 3W

tiet

-~ -3 - F
PTF3

_ _ _ _ _ L.1

'-*N'j

-4K4

M* 0

-OF

~ 00

0~~ S SUI-

00 I-

- 19 - -

C! c! 11i I , oo 0 0 0n I

WL - -2 -JIPJ J

'I J -2 ~

0 * X ... l1 % 0

to -. I.

44

0

Appendix D - Calibration data

0

0

___________________________.._ I ,IA c.
HUMPHREY TEST DATA "R r

FOR cnzcý inOW

VERTICAL GYRO _____________

JI CI.70Sto 39641 1A9S

MODEL NO. VG24-1904-1 TECHNICIAN

SERIAL NO. INSPECTOR DATE_______

SPECIFICATION
PARAGRAPH TEST DATA TEST REQUIRED

4.3 Erection Rates Pitch 'Z Sec. 90 - 300 sec. (2 - 6.7 0 /min.)

Roll.)•Sec. 90 - 300 sec. (2 - 6.7 0 /min.)

3.2 Starting Current •,• Amps 2.5 amps max.

3.2.1 Running Current Amps .7 amp max.

4.4 Vertical Accuracy PitchI _/VR .487 - .513 VR

Rol 0 VR .490 - .510 VR

O 1.1 Mechanical Tavel Pitch V*Acceptable +600.min.

RollK Acceptable 3600 continuous

1.2 Electrical Travel Pitch±__ ' +550 ,+2.5

Roll t±Po 0 +700 +2.50

4.2 Time to Erect
From Motor Off V-6- Sec. Less than 480 sec. (8 min.)

PoLentiometer Pitch V/Acceptable Resistance decreases

Polarity Roll VL'Acceptable Resistance decreases

5.15 Insulation Resistance - ohm Greater than 25 megohms
at 50 VDC

5.18 Sealing k'0.' Acceptable Vacuum equivalent to 25,000
feet.

0

HTD-876

HUMPHREY TEST DATA ,wyyor 1

AAA FOR A

.- ,Vmm VERTICAL GYRO
00o109T. Noo. 06264

SPECIFICATION .
PARAGRAPH TEST DATA TEST REQUIRED

2.1 Static Error Band Pitch Angle Voltage Ratio Acceptable Range VR
(Linearity) 550 4 .980 - 1.000

500 .S'9 .935 - .973

400 9 CL .847 - .881

300 7Z/ .758 - .788

200 .668 - .696

100 .579 - .603

00 ,.489 - .511
100 / - .397 - .421

zo2 0 .304 - .332

300 .212 - .242

400 .119 - .153S500 ' .027 - .065
550 .000 - .020

Roll Angle

700 W 7 .986 - 1.000

600 .915 - .943

400 61._ ..774 - .798

200 6,4 . .633 - .653
00 =02 .492 - .508

200 ff ~ .347 - .367
400 a/.9, - 4202 - .226

600 4 .057 - .085

700 400-. .000 - .016

2.3 Contact Resistance Pitch._4-L .10Ohms

Roll <0-00 4 00 hms

2.2 Potentiometer
Resistance Pitch 4 19q Ohms 1,900 - 2,100 Ohms

Roll Ohms 1,900 - 2,100 Ohms

u--
am ems E

1meow~

Appendix D - Mounting material

0

0

PRODUCT PROFILE PP-308
C-1002 damped

isolation materials

C-1002 offers performance, versatility
for wide range of applications Variety of materials

While E-A-R's ISODAMP C-1002 ther- and off-road vehicles. C-1002 is found adapt for many uses
moplastic originally was developed for in CLD systems incorporating materials Whether an application requires
use in constrained-layer damping sys- ranging from common plywood to a quarter-inch-thick damping sheet
tems, the versatile, high-performance multi-layer composite laminates. or a custom-engineered isolation
damping and isolation material today To control intense vibrational dis- mount, there is an E-A.R C-1002
has more diverse applications. turbances in weight-sensitive applica- product form to fit the bill.

With its high material-loss factor and tions, C-1002 is used as the constraining In sheet and roll form, C-1002 is
excellent physical properties, C-1002 layer in multi-damping layer (MDL) available in thicknesses from
effectively controls noise, vibration, composites with one of E-A-R's C-3000 .015-inch to 1 inch. C-1002 sheet
shock and motion in applications rang- Series energy absorbing foams as a base and roll materials can be coin-
ing from sensitive medical equipment layer. MDL composites are used in a bined with other E-A-R materials
to military ordnance vehicles. It is variety of high-performance vehicle to form multifunction composites
available as sheets, rolls, die-cut parts applications such as aircraft fuselage that provide weight-efficient high
and standard and custom injection- prop plane and engine mount areas. perfomance. Its excellent physical
molded parts, as well as in special,
temperature-tuned formulations. Improved system performance properties and wear resistance

As equipment mounts, feet and iso- make C-1002 well-suited for
lators, C-1002 protects against broad constrained-layer damping appli-

30 band and variable force excitation by cations in harsh environments.
20 damping system resonances. In com- EAR offers 41 standard C-1002

parison, materials such as traditional isolatoirs in 15 different styles,
~ ,0rubber greatly amplify the natural as well as custom die-cut and

0 frequency resonance and all higher injectkin-inolded parts. Because
.order resonances, thus reducing the injection molding with proprietary

p•,opp• amount of isolation possible. ISODAMP thermoplastic involves
As precision-molded parts, such as shorter cyele times and less waste

.30 grommets, crash stops and inertial than processing neoprene, silicone

-40 dampers, C-1002 is used extensively in or thermosetting rubbers, small-
office equipment, computer disk drives volume runs and prototype parts
and other compact electromechanical are more cost-effective.

02 • 0systems. It improves operational speed C-1002 materials can be die-,
o02 2 ;0 o W and accuracy by damping and isolat- shear- or knife-cut and are adhe-

F/gure -REQUKY RATIO 11t y,")ing resonances and rapidly dissipating sively bonded to clean, degreased
Comparison-Transmnisl"bility. shock energy. suibstrates. Pressure-sensitive

C-1002 is soft and flexible, yet physi- In addition, highly damped C-1002 adhesive backings are available

cally strong and resistant to tearing, provides controlled deceleration after for convenient installation. For
abrasion and skid. It exhibits low initial shock input. More lightly further ease of assembly, E-A-R can

rebound from impact, high dielectric damped materials not only amplify the ship parts in one-application kits.

strength, and excellent flammability initial shock input, but also expose the
properties, complying with UL 94V-0, system to significant and prolonged
FAR and FMVSS302. C-1002 also resists aftershock motions.
degradation from ozone, UV radiation, For more information, see E-A-R's
fungus, bacteria and chemicals. General Catalog No. 502, the

Because it combines superior damp- ISODAMP C-1000 Series Grommets
ing performance and strength with and Custom Parts Catalog No. 716
weight efficiency, C-1002 thermoplastic and technical data sheet MDS-19
is widely used in constrained-layer (ISODAMP C-1000 Series Thermo-

*damping (CLD) systems to reduce plastics). For additional assistance,
noise and vibration in weight-sensitive contact an E-A-R noise control ISODAMP C-1002 materlilL
applications, such as aircraft, ships expert at (317) 872-1111.

division 7911 Zionsville Road, Indianapolis, IN 46268-0898U . -]A4 cabot corporation Telephone: (317) 872-1111, TWX: 810-341-3412
C 1l26 E-A O•of. Ca•otW omw

Olylsi•n, Cabot Corporation
*7911 Zionsville Road

Indianapolis. IN 46268-0898 19
Telephone: (317) 872-1111
TiW: 810-341-3412 Material Data Sheet

ISODAM! C-1000 SERIES THERMOPLASTICS

Description
E-A-R ISODAMP C-1000 Series thermo- temperature-tuned formulations,
plastics are high-performance vibration ISODAMP C-1000 Series materials pro-
isolation/damping materials. Composed of vide maximum energy control in a wide
energy absorbing thermoplastic alloys, range of applications.
the material series is typified by extra-
ordinarily high material loss factors. The Peak Damping
high internal damping of ISODAMP Series PerformanceISODAMP "brnermlrate ShoreA
materials reduces mechanically or acous- Fr-mulatio Rag (*F) Ouro meWrtically induced vibratiorns and dissipates C-1002 55-105 56

shock and impact energy at a very rapid
rate. These properties-in conjunction C-1100 80-145 1 6
with physical strength, flexibility environ- c-ii00 95-145 70
mental resistance, anti-skid properties *Shore A Durometer (15-sec. test)

and good flame resistance-make C-1000 ISODAMP C-1002 and C-1100 are avail-
Series materials excellent for constrained able in sheets, rolls or as custom die-cut
layer damping, damped isolation and parts. And, ISODAMP C-1002, C-1105 and
impact control applications. C-1100 are available in standard and

Available in three peak-performance custom injection-molded parts.

Applications

- Constrained Layer Damping
ISODAMP C-1000 Series thermoplastics equipment and articulated and non-
originally were developed for use as high- articulated assembly equipment. The
performance constrained layer damping materials are used in a variety of con-
materials. ISODAMP C-1002 is widely strained layer systems-from common
used to reduce mechanically induced plywood, aluminum and steel to state-of-
vibrational disturbances and noise in air- the-art weight-sensitive honeycomb
craft, military and non-military ships, off- composite structures.
road vehicles, continuous miners, office

Constraining Layer for MDL
E-A-R C-1002 is a primary building block tries as well as in other high-performance
for the unique E-A-R ISODAMP MDL (multi- vehicle applications (reference MDS-50).

* damping layer) damping composites. MDL The composites are widely used to provide
composites provide broad temperature weight-efficient control of high-intensity
damping in weight-sensitive applications acoustical and mechanical energy in areas
where maximum energy control is such as crossover ducts, surfaces in close
required. MDL composites are primarily proximity to prop planes or in engine
used by the aircraft and aerospace indus- mounting areas.

___ Isolation Mounts and Equipment Foot
E-A-R C-1000 Series materials are mate- damping amplification at system
rials of choice for equipment mot ts, pads resonances and by dissipating vibrational
and feet in both OEM original deign and energy from the system. E-A-R provides
aftermarket applications. In addition to standard mounts, custom-molded parts
vibration isolation, C-1000 Series mounts and sheet material for do-it-yourself
provide protection from broad-band and installation.
variable forcing frequency inputs by

MATERIAL SOLUTIONS FOR ENERGY CONTROL
NOISE, VIBRATION, SHOCK, MOTION

C 1987 E-A.R Dmfiso. Cabot Coiorstaon
ISOOAMP is a regal d trademark

Grommets, Bushings, Crash Stops
1 ISODAMP C-1000 Series thermoplastics out oscillation or large initial displace-

are extensively used in office machines ments. In mechanical systems such as
and computer peripherals as well as in copiers and printers, C-1000 Series parts

* electromechanical equipment of all types are used as motor mounts, printer platen
to control motion, vibration, shock and and frame/case isolators. Crash stops
noise. In hard disk drives and similar sen- made of C-1000 Series materials can
sitive precision equipment, C-1000 Series reduce cycle time and increase reliability* grommets produce a more dynamically by providing controlled impact decelera-
compliant system. In systems where space tion with little or no rebound. See E-A-R
is at a premium, C-1000 Series grommets Grommet Catalog Form 714 for more
and bushings quickly dissipate shock information on the standard ISODAMP
energy and restore static equilibrium with- grommet and bushing product line.

Ordnance Vehicle Applications
Due to their compression-velocity sensi- die-cut sheets and custom-molded fratri-
tivity and unique energy absorbing and cide bars to provide enhanced protection
dissipation characteristics, ISODAMP for the ammunition storage system, reduc-
C-1000 Series materials are well-suited ing the overall vulnerability of the current
for many specialty ordnance vehicle appli- production main battle tank. In addition,
cations. The M1 Al tank capitalizes on other potential applications include interior
ISODAMP's excellent physical integrity spall protection mechanisms, shielding,
and the diversity of available material and composite and ceramic armor
forms, incorporating ISODAMP C-1002 systems.

DAMPING CHARACTERISTICS
C-1002

OE '"ESC"" 70 so so 40 30 20 10 0 .10 -20
to" '• Instructions-Reduced Frequency Nomograms

The reduced frequency format is the standard method for dis-
/I r I playing damping material performance data. To determine

dynamic Young's modulus and material loss factor at a given
temperature and frequency, use the following steps: 1) Select
the frequency of interest on the right-hand vertical axis. 2) FollowSIthe selected frequency line horizontally to the left until the selected
diagonal temperature isotherm is intersected. 3) Draw a vertical
line up and down through the frequency/isotherm intersection
(this vertical line will intersect the dynamic Young's modulus and
material loss factor curves). 4) Draw horizontal lines from these
points to intersect the left-hand vertical axis. 5) The dynamic
Young's modulus value is read using the Dynamic Modulus scale(• ,0, and the loss factor from the (Loss Factor) scale.

REDUCED FREOUENCY

C-1105 C-1100
OEGRIESCULIS 70 00 50 40 30 20 10 0 - OEOMES1CE.1ZSS 70 40 50 40 30 20 10 0

" 10. to' 1
10'

1.. . . (' 1 0) A P01

10o 10' 10, '0
10' 10' 10, W' 10' 10' 10' 10' 10' 10' 10' 1 to 10' 10 ¶t= 10 1 1 10' 1 1 '0 '0'

REDUCIE FREQEJNCY REDJCED FI•EQUENCY

TYPICAL PROPERTIES

Property Test Method C-1002 C-1105 C-1100
Physical Properties
Specific Gravity ASTM D792 1.289 1.287 1 282
Glass Transition, Tg ASTM E756 -20 0 C -13 0 C 20C
Hardness ASTM 02240

Shore A durometer 15 sec. post impact @ 230C 56 63 70
Rebound ASTM D2632 (Modified)

Bashore Resilience
% Rebound (First) 4.8% 5.4% 5.7%
Min. Rebound Temp. 210C 340C 400C

Outgassing ASTM E595 (Modified) 0.067% Not 0.135%
24 hr. at 10-6 Torr @ 400 Tested @ 500C
Total Mass Loss Water Reabsorbed 0.043% 0.045%

Dielectric Strength ASTM D149 Breakdown Voltage 166 volts/mil Not Tested Not Tested
Thermal Conductivity ASTM C177 BTU in./hr. ft. 2 OF 1.00 Not Tested .90
Coefficient of Friction ASTM 03389 on Etched Aluminum

Static .92 1.21 1.24
Kinetic .75 .77 .71

Flammability UL 94 Vertical V-0 V-0 V-0
0.125" Samples Recognized V-0

to 0.056"
FAR 25.855 (a-1) Meets at 0.060" Not Meets at 0.060"
FAR 25.853 (b) Meets at 0.030" Applicable Meets at 0.060"
FAR 25.853 (b-3) Meets at 0.015" Meets at 0.060"
FMVSS-302 Meets at 0.015" Meets at 0.060"

Strength properties ___ ___

Compresaive ASTM 0621 Method 8 240C 1
Deformatiln % Deformation (3 hr.) 10.4% 9.8% 8.4%

% Recovery (1.5 hr.) 90.4% 95.5% 95.7%
Compression Set ASTM D395 Method B

22 hr. at 220C (720F) 14% 23% 24%
22 hr. at 80 0C (1760 F) 62% 51% 55%

Tensile Strength ASTM D903 1574 psi 1807 psi 2058 psi
Elongation ASTM 0903 459% 417% 317%
Tlnsile Modulus ASTM D903 450 psi 805 psi 1155 psi
Tear Strength ASTM D1004 0.125" Samples 25.2 lb. 30.1 lb. 38.1 lb.
Abrasion ASTM D3389
Resistance H22 stone. 10OOg load Wear Factor 242 350 271
Environmental Resistance
Ozone Resistance ASTM D1149 Not Affected Not Affected Not Affected
Ultraviolet Resistance ASTM G84 (300 hr.) Not Affected Not Affected Not Affected
Accelerated ASTM G23 Method 1 Weather-Ometer Decrease in Not Not
Aging 1000 hr. Exposure to Cycles 102 min. Gloss, No Other Tested Tested

Light (carbon arc) @ 50% RH & Significant
630C, 18 min. Light and Water Spray Effects Noted

Bacterial ASTM G22 Resistant Not Not
Resistance No Growth Tested Tested
Fungal ASTM G21 Resistant Not Not
Resistance No Growth Tested Tested
Chemical ASTM 0543
Resistance 1 wk. Immersion % Weight

Change in Reagent:
Sulfuric Acid (2 molar) 0.00% +0.38% +0-39%
Diesel Fuel +2.91% +2.62% ÷092%
Distilled Water +0.36% +0.36% -0.39%
Sea Water -40.36% --0.37% --039%
Mineral Oil -0.36% -0.38% 0 00%
Ethylene Glycol -0.36% -1.16% 0 000/0

Temperature Range Peak Damping Performance Range 55 to 105 0 F 80 to 130°F 95 to 145-F
Recommended Maximum Intermittent 180-F 180°F 180 F

ISODAl P Velocity-Sensitive Compression Resistance

E-A-R ISODAMP C-1000 Series materials they are compressed slowly, they appearC-1000 SERIES are highly compression-velocity sensitive, soft. Compression-velocity sensitivity is
This sensitivity is similar to that displayed one of the keys to ISODAMP C-1000 Series'OPLASTICS by viscous dampers. Like a shock excellent shock absorbing and low
absorber, if C-1000 Series materials are rebound properties.
compressed quickly, they appear stiff; if

Specifications INCH/MIN 20 2 0.2 0.02
Isolation/constrained layer damping iOO1-
materials shall be E-A-R ISODAMP C-1000
Series thermoplastics manufactured by
E-A-R Division, Cabot Corporation,
Indianapolis, Indiana. T

C- 1002-01 0.015" thick ~ 0-/USAFR S50 LOA ING
C-1002-03 0.03" thick
C-1002-06 0.06" thick

C-1002-12 0.12" thick
C-1002-25 0.25" thick
C-1002-50 0.50" thick
C-1002-99 1.00" thick 0
C-1002 molded parts 0 5 Is
C-1105 molded parts % COMPRESSION
C-1100-06 0.06" thick
C-1100-12 0.12" thick
C-1100 molded parts Compressive Creep

In isolation systems C-1000 Series mate- for 25, 50 and 100 psi are shown. The
E-A-R ISODAMP C-1000 Series thermo- rials are recommended for a 50 psi opti- data represent C-1002 at 70°F with a
plastics can be die, shear or knife-cut. mum load. The compressive creep curves shape factor of 0.5.
E-A-R molds a broad line of standard
vibration, shock and motion control parts
and offers custom molding and die cutting.

The ISODAMP C-1000 Series materials
*Y be cryogenically machined to pro- loops%

ce prototype parts. Cooling by continu- 20"
ally applying a Venturi-effect air gun to the
cuffing tool or freezing ISODAMP prior to 0 50PSI ---------
machining will sufficiently harden the 25 PI
material for machining.

ISODAMP C-1000 Series materials can be I I I I I
bonded to clean, degreased substrates IMIN IOMIN I NR I DAY I WK I MO IYR tO YR
with Bostik 7132/Boscodur 4 adhesive TIME 20 YR
system. Refer to E-A-R MDS-25A for
detailed properties. Sb's R

For design and application recommenda-
tions, contact your nearest E-A-R repre- ISODAMP C-1000 Series materials are C-1002 per ASTM F-38 conducted at 72 0F
sentative or sales office. often used in gasket or washer applica- are shown.

tions. Stress relaxation data for 30 mil

ioo.

90.

2 so 200 PSI

The data listed in thi s data s are atypica or average values 500 PSI
based on tests conducted by independent lalborltowes or by l 60
tie manufacturer They are 'idnicative only of the results obtained
in •u•h tests and should not be considered as guaranteed
masimums or minimums Materals must be tested under actual Z so
service to determine their suitability for a Particular Purpose lad

401

CEO "130
20 I I

Dilsiono, Cabot Corporaon io IO oo0 io000 O iOo0000 io00000
7911 Zionsvlle Road
Indianapolis. IN 46268-0898 TIME (SECONDS)
Telephone J317) 872-1111
TWX: 810-341-3412

P•id n U S A SAN$?

S

Appendix E - Three-Axis Magnetometer Data Sheets

0

For HEADING and ATTITUDE SENSING APPLICATIONS

**aoý -etcmre!ers are tas! oeccc ~-,- acceptei oevice toSA
e -, -teacrng arc or Auttice r'crrnaton

T-'e,, are sma" cr,! arrc rz,,s, e&'ec* ,e aic mray te "sec r a
,a nce c-' 7.e a, -- a r lrrrel .,-e:e e~i0 ~cO
ivater

As a soc-ý s Iat t:-l. arce!P-c-rc!oz' 1 ýe'. ce ýfIe, 'e~s ~at
,cr'e s~is~e~r ,,Es -o-er a,,(r-ar co[era~e ~vill, e Cergita or anaicg

n!rrfac~r

120,65mm

0(75i47On) TAM/7
Our new development is a self contained hybrid

. strapdown magnetic field measuring module
having three axes of measurement. The package

114 3mm consists of fluxgate field sensors and hybrid
14, 3ram circuits plus some discrete components mounted

I- on a PCB. All are contained within an extrudedS 1 aluminum case.

Typical uses are:
Fixed and rotary wing aircraft; unmanned

31 75mm aircraft; underwater remotely operated vehicles;

(1.2%n decoys; missiles; soundings rockets and
co-•.W NB satellites; targets; torpedoes; current meters;Canno nl 0EM OP - NMR f _

34 925mm D(1.375#n)

8/10 BIT HEADING SYSTEM DHS 2
A two axis strapdown fluxgate compass giving
heading angle output as a digital word (8, 9 or
10 bit). Secondary outputs in analog form of d.c.
voltages proportional to Sin 0 and Cos 8 are
provided as well as a scaled d.c. 0 to 3.6V signal
"proportional to 00 to 3600

The compass system has no gravitational
"reference as the two axis fluxgate sensor is not
normally gimballed. Systems having gimballed
sensors have been provided, however, in the
past.

Typical usus are: Sonobuoys: RPV's/Drones: Air
and Sea Missiles: Databuoys and Navigation
Systems.

ANALOG COMPASS SYSTEM
A simple two axis analog fluxgate compass giving
output signals of Sin 8 and Cos 8 The magnetometer
also has auto gain circuitry to allow for use anywhere.
irrespective of latitude.
Typical uses are: Sonobuoys. Databuoys and simple
Navigation Systems.

0

AHRS MAGNETOMETERS TYPE TAM/4/6
A three axis magnetometer used in Attitude and Heading
Reference Systems (AHRS). Outputs are in the form of three
channels of analog processed signals. The AHRS can be
corrected for orthogonality and are available with uni-polar
or bi-polar power supplies. These units will be of MIL-Spec
design and contain appropriate circuits and components.

Typical uses are: As part of fully attitude compensated
AHRS for prime or standby use in Aircraft (fixed or rotary
wing) or RPV's/Drones: in Air or Sea Missiles: in Arrays at Sea.
in Land-based Measuring Instruments: and in Navigation
Systems.

DIGITAL HEADING SENSOR DHS 3
A strapdown fluxgate compass having its two
axis sensor integral with its electronics board.
Heading angle output is in the torm of a digital
word (8. 9 or 10 bit).

Typical uses are: Sonobuoys; Databuoys;
RPV's/Drones: and Navigational Systems.

SENSORS
Most sensors are preferred to be provided as

strapdown devices although gimballed versions
are available. Sensors can be provided as single.
double or triaxial fluxgates.
The fluxgate sensor is a wound component with
a toroidal ferromagnetic core. A drive field is
applied to the core and the external field
interaction with it produces an assymetric
change of core flux. This changing core flux is
detected by a solenoidal winding over the core
and the resultant signal is processed.
Individual sensor packages vary in size
dependent upon the trade-ofis accepted
against performance, cost. power etc.

NI a.

Skin
Sam~

lid u

8 Ni

akim

caa

IsN

PMM

zH

Appendix F - Signal Conditioning Board

Appendix F - PCB Schematics

S "" .1 V|

RIF

. w C" To VME

T Coneto

"•'•,•~ ~ ~O "--_.•*•I>-•'"•l- I., Ow AirSpeed

• :; ';='•--:•E•I•,To-Analog

• " ='Connector

TransducersBCM Designs4

FIP Main Board
Page 1 of 3

Revision 1 .0
e '~Completion Date •Oct. 9, 1989

Copyright 1989 BCM Designs

OToVME

Fil

Input .

From . A h
Display To AnalogBoard i L_-, ,* CC4Connector

P".

.'ev 'To VME

Altt

"4 To Analog
Ic Cal Connector

BCM Designs
FIP Ma~n Borard

Page 2 of 3
l~evision 1 .0
lompletion Date: Oct. 9, 1989

Copyright 1989 BCM Designs

RX

To Analo

3-AxisAxi

RRu

RO C 9 :D_ O2 I.C12To Analog

Connector

Reiin1.0
Fromto aTe c ,18

Copyrigh 199 C Dsi

FI-4

Appendix F - PCB layouts

Sol...

C7.1: *-'-o
a- a- -

.4: 0 ~ __0'_

0 0

cop 0

00

00

4D 00-

U 00

00 -

-00

@0

~90 @0:

.- 0

0c 0.-..

rFLA 0

Olt ~ ~ ~ i OF *A 0 Q, 1 APs
asq- 47 o

a.Q *• o4hp P 01i Q7 OU •o 40 allA' m Orl 'll 0• OAC'

04 aA1 o. 'F Ole Z V or a coo
@p0Olt o° es a? FA ORa a s 0, a ob ill

640 @; o: 1ll 0',,1'II

-, m, ' '

a , age, a8 ot 07 ev idJoI, o0,"01• m , @1 @02 a a 7 0 7 .

a a

to n= o, t
Mot 09, o e o 4 W+ ort Ci c s 0at OOp a .

.0. 4w~

Oo a p41 ado all
.,ao .d. a•o~6U ,... 0, ,,+, j

F7*i.,,, =+ E,,o .o*i

S0s 41 0 7 liiO

O111 P JOO : C41

04 6 0,

us

o'9 3I2 dJ

&Its

* e d oed

0oil oo

C*,+. ato - •,: '+

low.• oca. , =
•P o'• O.o, ,o •,o,*+' .- ',°+ :-, o,' +,;.• •" e,0:

2O:

0 0

6~ f 01:01
ro*09 m- oo sa 0

0 0

00

0
_

a0

II 0 ~100 0 @

t 10 0
0 00

00

0- 00

0- * 0 : 00 O

0Z 0 0 00
0 0 0 0 0-

O- :0o * 1 0 0 0 010
0ý *00

00
0

0 0 0--0a
0: 0 00

0 000

0 000

0--

'iC 0

-0

0-
--

0

a 0
u 0 0

0--0

00

0 000

00

00
00

0001.Jj 00.
0 0_ __0_~oýo ý 4

0-0

0 0
0

.00-
00-
@0

0
-00

0- -0@0 -- - O

0.0

Appendix F - Parts Data Sheets

OP-77
NEXT GENERATION OP-07

(ULTRA-LOW OFFSET VOLTAGE OPERATIONAL AMPLIFIER)

PRELIMINARY
FEATURES Low initial Vos drift and rapid stabilization time, combined
Outstanding Gain Linearity with only 50mW power consumption, are significant improve-
* Ultra High Glain 5OOOV/MV Min ments over previous designs. These characteristics, plus the
* Low Ye 25MV Max exceptional TCVos of O.3,wV/*C maximum and the low VO5 of
* Esollet TCVoo..................... 0.32V/*C Max 25SMV maximum. eliminates the need for Vos adjustment end
s High PORN 3MwVV Max increases system accuracy over temperature.
High C111111111................ 1.OM&V/V Max PSRR of 3uV/V (110dB) and CMAR of 1.01&V/V maximum
o Low Powe Consumption 60mW Max virtually eliminate errors caused by power supply drifts and
Fita OP-OT, 725, 104A1308A, 741 Sockets common-mode signals. This combination of outstanding

characteristics makes the OP-77 ideally suited for high-
INPORMTION ~resolution instrumentation and other tight error budget

ORDERING INOMTOtsystems.
PACRAO5 This product is available in five standard grades and three

wsuanca Puerto OPBRAIING standard packages: the TO-99 can and the 6-pin mini-dip in
t045@ ow DIP ?UMPRAT&MI ceramic or epoxy.11-4t 111,111 I-PINf RAMNe
OF"". OP1077AZ' ;1 L The OP-77 is a direct or upgrade replacement for the OP-Ce7.

Op"11.0 op"nsz Opnlp IND OP-OS, 725, or 108A op amps. 741-types can be replaced by
1,r7M, oPM7Z* MIL eliminating the V01 adjust pot.

0171 OP?70Z Op?70P CND

IsdPI4 eeeProtessed In total cafomphance to MiL-STO-sa. add /143 sital PIN CONNECTIONS z
pg mimler, Oouiauit fectot for 55 dama ~n. 0
'u conlinsmai ond sIndustrial toimperature, rangeat aeasisewt

GENERAL DESCRIPTION
The OP-77 significantly advances the state-of-the-art Inso
pweislon op amps. The OP-77'e outstanding gain ofEPXMN-DP(Sfi)
4000,000O or more is maintained over the full ±10V output - a PK IIDP(-ufx
rang. This exceptional gain-linearity eliminates incorrect- $-PI11110N HERMETic DIP
Wsa system nonlinearitlee common in previous monolithic TO.99 (J.Sufflx) (Z.Sufflut)
cap mpe and provides auperior performance in high closed-
'Gap-gain applications.

SIMPIFIED SCHEMATIC

par

42A AM 40 JU1

alp

as HI al asOUPU

~Ik5iilia~yprutit IfematenIs ase e lelig ea lmied ui~erol evses Pnalspeffeaten ma vay.P.essentet ocl sle
Wd~bsfe~as as saee as6Ae

P I 1 OP."l NaXT GENERATION OP-O? - PINEUNINARY

ABSOLUTE MAXIMUM RATINGS (Note 2)
Supply Votage =22V NOTES:
internal power Dissipation (Note 1)500mW I. Sse mom for maeximum smarnowtemporaturs rating and *ersting factor
Differential Input Voltage....................... ±30V MAXIMUM AMBIENT ORNATE ABOVE
input voltage (Note 3)..........................±t22V TEPRTR MAXIMUM AMBIENT
Output Shaft-Circuit Duration................ Indefinite PACIIMI11 TYPE Pon RATING TEMPERATURE
Storage Temperature Range.O9 j a* Iw-

J and ZP410868 -65'Cto +1WC T-fJ
p, package -650Cto +125" C sPn menvioc DIP Z) 'S1C a rnw/'C

operating Temperature Range s-Pi Plsu DIP (P C5&w
OP.77A. OP-778S..................-550C to0+1250C 2. Abaooutemaxinvum rattnriappilpto both pacageaaansand DICE. uniona
OP.77L OP-77F -25*Cto +95C PK nw
OP-"G..............................0OC to 70C 3. Forasup"fyvoageausithndn.2wthebeooute maximuminputvoltage i

Leand Tempra90turel Range (Soldering, 60 aft).... 0.. W C equal to tMe supply Volutag
DICE Junction Temperature (T,)- 650C to + 1500C

ELECTRICAL CHARACTERISTICS at VS 15 iV, TA 250 C. unless oth~erwise noted.

OP-77A OP-773
PARnAMETER *Too". CONDIIONSo m 1W EAX ON ?" MAX UNIT*
Input Iiaa6-iag al - 10 25 - 20 s0 iov

vs-OPES ei sta fast Avoomii (NOW 1) - 0.2 - - 0.2 - b.V/
14

0

IinpsOffmscurenmt Ice - 0.1 1.5 - 0.1 2.0 nA

Input Sa" CUrran Is -0.2 1.2 2.0 -0.2 -1.2 2.8- IA

Inlput Mlaein %ft s,. 0.l H2tol1OWN(Noata2) - 0.36 0.6 - 0.35 0.6VI
to- 10Mg (N~ote 2) - 10.3 1I.0 - 10.3 110

Inputi Notes V~ee Out"t 0, to - 10064: (NOWs 2) - 10.0 13.0 - 10.0 13.0 nviv Mlz

to- 101iowam 2 - 96 W o 1.

to - 70" M(Now 2) - 0.12 0.17 - 0.12 0.17

iptAssat a (Note 3) 26 46 - 18.5 46 - 11111

inptmemsinars- R - 200 - - 200 - all

Inpulvame R FgP IvR z13 %14 - =13 ±14 - v

muoonMdsssse Rle CMRN V-:t 1V - 0.1 1.0 - 0.1 Ia v,v/

Pouemrsuppy AgeblRea PuRR Vs1±3vttiev - 1.0 3 - 10 3 ..VIV

Lqgn a"pGM AV5 AL 212kiL V0o - t IOV moo 121100 - 2000 01100 - V/mV

ALI ±1a tal14.0ai - 213.5 114.0 -

Output fg~ut" VO Fi~a26f tits ±110 - ±1t2-3 ±13.0 - v

RLX Ikf i12.0 r.12.5 - t 12.0 ±12.9

slow PA SIR FL a 2ka Nae2) 0.1 0.3 - 0.1 0.3 -).

CtNaW-Low OWAm aS AVC a+I41 at st2) 0.4 0.6 - 0.4 06 -tMM:

OgPflAM OOutlw i@NUIMN5 R0 V . 0. 1, .0 - W - - so I-

Poe ao"o, VS -:t15V, No Load - s0 6o - so 60 mw
V, 13`1. NoLoad - 3.5 45 - 3.5 45

OlfoN AdiuU5Mt"fRanei Rp 2gfl - x3 - - ±3 - my

"01o1101
I. L~ng.TewfflisA Oftss itgsStabulity roleo toft-l awesg trand tine a 2. SorrOel.3d

V00 vs. rime over extended peinoa after Ina frsit 30 days of operation. 3. Guaranteed by deswg.
Excludidng tOw initial fhour of operation. chlanges, in Vos during tMe first 30
operating daos ame typs~aly 2.3011.

5-11111 1/6, Rev. A

ELECTRICAL CHARACTERISTICS at vs- i±15v, -55*C: TAS '125*C. unless otherwise noted.

OP-7A 0P-739
,11E1IR SYMEO Co41411,11118 MON TYP 01AX 11110 TYP IWAX ut"Ts

W1 0119 Val" Volag - 25 60 - 45 120

inu fmTCVOS (Notei1 - C 1 03 - 02 06 v

~,III6I~mcuftm 10;- 01 22 - 01 45 flA

silowitOFFMtCuPwfl TClIS (Note 1) - 01 25 - 05 so QA/c

1 pIIMa"CUtrflt Is -02 24 A -02 24 6

lowg I~u 1110 cijrint M (Nt1)- a 25 - is 35 A1

wmoniftdfl@SU1tiooo lac;i CMAA Vcm.±13V - 0.1 10 - 0.1 3 /

tpw SUIPOY flctiIllaftti MlAN VS - 3V to ¶11V - 1 3 - 1 5 OV/V

L&p44M' Yoftep Gain AVcO AZ 21111 V0 ±10V 2000 am00 - 1000 400 - V/mnv W

0pWW V~ Swingb V0 A R? 2kl :12 ±12.5 - =12 = 12.5 - v

pww erCtfl~umfpton Pd V,:15. ltNo Lo4 - so 75 - 60 75 mw

ammanUt6d by desig

z
TMICAL OFFSET VOLTAGE TEST CIRCUIT TYPICAL LOW-PREOsueNCY NOISE TEST CIRCUIT0

0 0

VICS

V.-

mi.,

eta 1/86, Rev. A

(~OP-" #46K? GENMtIRA N 0P4? - PAI1111111MNAY

ELECTRICAL CHARACTEIS1TICS at VS - t 15V. TA =25' C. unless otherwise noted.

09-M7 OP77P/G
PAaAM1111111 SYMBOL CON"~ONs MNI 1P MAX umn iP Is UIT

Input offset Voltage VOS - to 25 - 20 W AV

voi-Ttmo V05/Timfe (Nom101) - 0.3 - - 0A - MV/MO
SWWllity

input oflseCurrent lg- 0.1 is - 0.1 2.6 n

input owe current Is -0.2 12 2.0 -0.2 12 2.5,

Input PA" olestage a'" 0 Ift to 'OKI - 0.26 0.6 - 0.31 0.665lt(Note 2)

inu - o- 10"I - 104 11-0 - 10.8 20.0
0,ms~n~t to - 100HA (NOW152) - 10.0 13.0 - 10.2 13.5 nflVvMZl

f0 1~t o 00CH3 9.5 110 - 55 1.

Input No 0.1HztOAM to lOpla - 1 30 - is 35 VA~
(Note 2) 1-

InputNis P t -42M - 0.22 0.50 - 0.25 0.60

Cujysfit GOMM o I~a NO - 0.14 0.23 - 0.116 0.2 pA,,v'-#
to .1000HZ - 0.12 0.17 - 0.13 0.15

input Resistifle- RN (Note 3) as 46 - 155 45 - M

common-sioa. - 200 - -00 -oi)

Plat5isetn" IvNl %13 ±14 - ±.13 2 14 -

Re 1im c6-2 3 - 0.11 1.0 - 0.1 1.5 MV/V

AdeSuI &O ti PlAN111 VS - 3Vto =118V - 1.0 3.0 - 1.0 3.0 MV/v

LNWW Avo O~ AI 0100 1200 - 21100 500 - V/ImV

SwIN" V0 A Na 2n 112.5 2±13.0 - ±12. ±1&0 - Of
M, a1wL) ±110 t±12.8 - 2110 ±12.6 -

S11411111Pet $1 ail Na 2kiul(P4052) 0.1 0.3 - 0.1 0.3 - V/00

C@55h~oOt oA(NO" 2 0.4 0.6 - 0.4 0.5 -MH

N0 V - 0.i10 -0 - so - - go -

PoviCnimmo d vs- tIfv.Ne oa~d - so so - so sof
Pae~nti~toiVe-23V.NoLosd - 3.5 4.5 - 3.5 4.5 m

Ofstg Adluslimeniivt PI *0k - t3 - - ±3 - fIv

I. Long-7bim Input Offset was" StUN"e toft to tile ammisd trens mie
Of Votiv. Time okw extended -ed e. s ~the ati 30 dens om opesldn.
Smciudifwheinftielheof sesn Do climnim in ol~utingilmeifinNt30
o.eedn dROPe YOWIYeLySPV.

2. a-M=noume.
3. Oveiniwmsi by design.

s-us 1/66, Rev. A

ELECTRICAL CHARACTERISTICS at Vs = -=15V. -26' C S TA S -~85C for OP-77E/F. O*C S TA S -70*C for OP-77G.

,,n)55 otherwise noted.
a-OP-77E OP-77F/G

PAMg1Uft SYNSOL CONDITIONS MIN TYW VAX MIN TYP MAX UNITS

~ ho ia.VS- 10 46 - 20 100

AO8inp0ut Off TCV05 (Note 1) - 01 03 - 02 08 A.V *C

,,OIutomielCurrent 103 - 01 2.2 - 01 As nA

Aw"iptote ~ o (Note 1) - 0 40 - Os a A*
current Cr1

~.I~Sutft-2 -2.4- 40 -02 24 so0n

A,~0Inlput Bid TCI (Note.') - a 0 - is 60 ;A
current Drift V 10 = 13.5 - =130 ±135 - VA

pcoln~sIIoe CMPA VCM"±1
3
V - 0.1 10 - 01 3.0 AVIV

PSANP Vs-±3V to t,11V - 1'0 3.0 - 10 5,0 AVIV

agww Aa kl2000 600 - 1000 4=0 - VIny

soneI V0 A R~2Iil ±12 =13.0 - iQ2 =13.0 - v

poeaerCofioufflotiaf Pd VS =1SV, No Load 60s 75 - 60 75 m* Z

safoe NO

2. Gums I~ try deell.

0 ~ ~OpEN-OOP GAIN LINEARITY- .-

N V o I.1v @v 1.16V V.

V AL -Sun~

Aculopen-loop voltage can vary greatly at various output This is the output gain linearity trace for the now OP-17. The
vlae.All automated testers use end-point testing and output trace it virtually horizontal at all points, assuring

therefore only show the average gain. This causes error* in extremely high gain accuracy. The average open-loop gain is
high closed-loop gain circuits. Since this is so difficult for truly impressive - approximately 10,000.000.
manufacturers to teot. you should malts your own evaluation.
This simple teat circuit maktes it elasy. An ideal op amp would
shlow a horizontal scope trace.

5-111111 1/86, Rev. A

- OP-i? NEXT GENERATION 094?rf- PRELUIMINRY

DICE CHARACTERISTICS

1. BALANCE

2. INVERTING INPUT
______________________3. NONINVERTING INPUT
______________4. V-

- IL OUTPUT
7. V.~ 0. BALANCE

oil 11112 0.10 x 0.06 twft. amO eq. mfta For additiounal DICE Inento'a. rotor to
(2.14 x us4 mmt 3.611 wq nminIS 208%ot Book. $000"1.2

WAFER TEST LIMITS at VS 15V, TA -250 C for OP-77N/G devices.

OP-"" 01171,41
PARANUMU SYMBOLt COHOIDtONS UNVIT LITfsU"
input Offme Vottaep Vas 40 75V if

lnputo"c O Noe Cu0l8I 2.0 2.0 61
Input 0"~ Cu, oil Is z2 t2.4'Ak

Input Resiwrsta
INC" 1) 20 17 mn mil

input witaege ange WiR :13 z3N

Commfwn-mode 1MR 1. 3VIi

poe Ng PSRR V93±3Vto±ISV 3 3 VvM

A, - 10nf :3 13.5
outpu¶t ~aga "n VO I R~2iin =12.5 =12.5 t

ML - ktb =12.0 ±12.0

LatgeolgAl RL -2kfl

Oliftentul Iput%30 ±30 t~

Powe C4111011114111,00 Pt YOU, . OV 60 soi

1. Guanantsd bydein
Egactftwa Iesm we parolon at wafeo pobe to t"w limits sown. Ous to vanatitns in wsembll meNod and normal yai~d Ices. yasd alta plickagvg q
guaranuteed for slmnderd prodiuct dice. ConcuR lawt"r to ngotit specificationsastiedl on dice lot quilifictebw thq sfru~ ample teot wmin"b and willing

TYPICAL ELECTRICAL CHARACTERISTICS at Vs 15V. TA +250 C, unless otherwise noted.

OP.TTN 01114T0
MaAR slga 11VIIOL CONDITION TYPICAL. IWICAL Ulm

AweIptOW TCV0 A'.5wf 0.1 0.2 V1
wo~ag on"

Nulled Input Of00set Tco AS - 50(X. Np -2Otf 0.1 02 y

Awarag input Offset TC10S O's '05.*
current Onft

slow aMM SRI A, a2kOf 0.3 03 4

Closed-Loop aw Av - -1 0.6 0'sWI
Soid iditt

1/86, R"w.

MC34085nC35O08

H4IGH SLEW RATE. WIDE BANDWIDTH.
JFET INOUT OPERATIONAL AMPLIFIERS HIGH PERFORMANCE

These devices are a new generation of high speed JFET input JFET INPUT
monolithic operational amplifiers. innovative design concepts OPERATINAL AMPUFIERS
along with JFET technology provide wide gain bandwidth product __________________

and high slew rate. Well matched JFET input devices and ad. __________________

vanced trim techniques ensure low input offset errors and bias
currents. The all NPN output stags features large output voltage
swing, no deatiband crossover distortion, high capacitive drive
capability, excellent phase and gain margins, low Open-loop out.
put impedance, and symmetrical source/sink ac frequency
resownse. P SUN u SUPPX

This senise of devices are available in standard or prime per- PL.ASTIC PACKAGE CERAMIC PACKAGE
formance (A suffix) grades, fully compensated or decompensasted CASE 626.0 CASE 693-02
IAVCL;;2) and are specified over commercial or Military temper.
ature ranges. They are pin compatible with existing Industry stan. a SUPPU
dard operational amplifier,, and allow the designer to easily up- PLASTIC PACKAGE a

18. MHz for FulyCompenisated Devices PIN ASSIGNMENTS

eHigh Input Impedance: 1012 (1 Nonin..i Inpui Output

is Input Offset Voltage: 0.5 mV Maximum ISingle Amplifier) E Offset Nuli

a Large Output Voltage Swing: - 14.7 V to +14 V for Single. ToV y~ew
VCC0VEE -: 15 iV

e Low Open-Loop Output impedance: 30 0 (a 1.0 M~lz Output I VCC

e Low ThO Distortion: 0.01% Otu

0Excellent PheewGain Margins: W1*7.8 dB for Fully Compen- iiu~

sated Devices VENiinputs2

Dual, Too View

output 1 C OutputS
1I s .0 Outputs IjG

1Ipt

VCC C. 21 VEE .

PLASTI In lpt2 ~ Inputs 3L W
CASE SIG -01 PLASTIC PACKAGE CERAMIC PACKAGE

SO-iN1. OW Output 23 CASE s64646 CA-SE e3N-a
NIC L i' NC P SSNT

oinw~~m~amanououtput I Outpt4
00 Aw# raw AVCOPS ?emW*@bi, Inputs I~ Inputs 4
peswse -APAm -o@~oou F- fq atduW

MC3IU.AU~ MC3IUOAU - 6to +.1S` Ceramic OWP VCC V EE
Single MC3uISDAO MC34090CAD 0 to - 7WC So-a

- - MC341111IPAP MC30WSPAP 0 to + WC -Plastic DIP - inputs 2) no ~I~t3
0"a MC34M2PAP MC3408VAP 0 to . 7WC Plastic oIPr

MC3IOSLAI MC3110111LAI. - to 121 Ceramnic DI U 2 Outpu 3
0usdl NC3411SSOW1 MC340IIOW 0 to * 7WC SO-iN1.

MC340WSAP MC3SOUSAP 0 to - 70*C Plastic DIP Quo. Top View

MOTOROLA LINEAR/INTERFACE DEVICES

2-283

MC34060, MC35090 Series

Input ifrna Voltage Range VIR Note 1 volts

Output Short-Circuit Duration Mote 2) IS Indefinite secondsa
Operating Ambient temperature Range TA I

MC35XX-55 to + 125
M__3_XXX 0to '.70

Operating Junction Temperature jI
Ceramic Package * 165
Plastic Packgep *125 _ _

Storage Temperature Rangest I
Ceramic Package -U5to +165
011-aacicckage -556to +125

I. lifeis of bodi inout~I3a iiiitsiv mumao exiceed ins nai~iwds of VOCr V11.
L. Powera di@ampbwi must be woiiaidared to ensura maximum iuniaohi tempserstui CTjI to not

EQUIVALENT CIACUlT SCOEMATIC EIACH AMPW)

VCC

01
Na

(Mc~d0O. CIO

MOORLALNER/NTtACutVIE
2-284

* MC340$0, MC35090 Sod".

IDC ELEIC1PWAL CHAPACTEPUIClS Vcc - - IS VVEE 15 V, TA - Tbow toThigh (Note 31. umm toheninsenoted

A Suf -to-llut

syw WnTpk..MrTp Ru

TA.- 25C - 0.3 05- 0.5 10
- * to + *7=C)MC3406. MC3408 1) - - 2.51 - 30

TA = -SSC to - 125C MC35o6O. MC35M6 - - 3.5 - - 40

TA-25*r - 065 10 1,-
TA 0C t -7(r (IC3M.MC3Mi- - 3.0 - - '

TA. -551C so - 125*C(MC35M6. MC3506) - - 40O - - 6.0

TA. -25*C - 3.0 60 - 6+0 12
TA 0C o 7YC(M34. OC405)- - 6.0 - - 14

TA-- 5C o10-i251C(m=3084. MC35M6) - - 9.0 - - 115

Average Twnuat6 COONfICeIM of Oftill V~lg .1v*.%T - 10 - - 10 - V-

Input Dirn Cu a't)Vcm - 0 Note 5) lie
TA - - 25*C - 0.06 0.2 - 0.06 0.2 nA

TA0C 10 -.70'C - - 4,0 - - 4.0
TA-- 5C 10 -125C - - so - so

TA--25C- 0.2 - 0.02 01 A

Lag inlVog A)(o -=10V R 2.0k) AvLvtmV

TA. -- 25Cso
s 25 oTA - Tlo 00 Thig 25____5

:uo V~ tage SH
V

A1IR~ . 2.0 k.
T

A~ 25T 132 13.7 - 13.2 13.7 -

A14, - 10 k. TA.-2* 341. - 13419 -

RL -10 I. TA -Ttoo to Thigh__ 13.4 - - 113.4 - -

RL- 2.0Ok. TA "i25*C VO _ -¶41 -135 - -141 -35
A 1 - 10Itk.TA.-2* - -17 -41 -14.7 -4
A1 - 10 k. TA -TjowtoThigh - - -140 - - -140

Output SmnCutCrt(A 25*C) 'I mA
Inu Ovrm .0 V. Output to GmaundI

SC 20 31t 20 31 -
.. 20 26 - 20 28 -

Inpiu CoitoeMooeVaPit enemge VICA WVEE -4 0)to WVEE - 40)10 V
TA- - 25-C (VCC - 20) (Vcc - 2 0) __

Cowntim Mooe Reectaio ARoo (AS ii 10 k. TA - 25T) CMFIF 75 -90~ - 70 90E- e

Power Supply 11secto afIt (PhIS -100of1.TA -25C) PSAR 75 66 - 70 66 dB 4

Pow Supply Cwvren 1E) mA

TA. *-25-C Z5 3 - 25 3 A
TA.- Tjo to Thi.gh~ - 42 - - 4.2

TA. -- 25*C - 49 60 - 49" 6 0
TA . TjtoTw lo Thg - 75 - - 75

Cuad
TA -. .25C 97 11 97-
TA 'low 10 ?Thih- 1 13- 1

Nim1s 1coNOMio
3. TW. 5- C for "MC3A T 1 w WC to, MC3OU1.A Thhgi l2SC for MC35010A Thigh Art to. MC3I06OA

MC3908IA 110104081A MC3IOSI.A MC3iOSIA
Mc62A MC34M.0A MC3SOS.2A MC34M6A

A 3OSA MC3403AMas. McI3A
MC311011`A MC34MS4A MC3SOSI.A MC34OSI.A
WMC3U.A MC34OUA MC3SOSS.A MC34OS.A

4 See .opica¶on rnitionnson to, rypical Changes in inout ofthit voitage d. to .04dW.ItmyT and temw.atur. cvcl~tg.
S' L-.1i at TA 2S*C a.. Guaranteed 0V high temlat'aau. (Thi~gh) hta'ng

MOTOROLA LINEAR/I NTE RFACE DEVICES

2-285

MC34080, MOWN08 Series

AC ELECTRICAL C""RCTERISnC8 (VCC =11 V. VEE I IS V, TA S'2C unless otharwVl. noted,

-A Suffix111,11,01031
Chawactalte- Symbol Mit Typ Max Mitt iWp Max Unit

Slew Rate V, - tov to - 10 V. L 2,0I. CL 100OoF) SA .
Compensated AV --10 20 25 - 20 25,

AV= -10

Phasempnargn(Cmendtd AV D20 0re040
AV -0 50 - so _

Aetln Time __10_ VdtpBVý)I

GnMagnCompensate tedl8.

Copesae AVOC 1 t00 7600

RL .20k
I___n

AL A- 20k.C - .676 _ O

Equivalenit input Niot"e voltage On 3 30 --V
As tO I0t1. f -1.0 k~z 30 M

Equivalent Input Ndoise Currant If -10 k~z n - 0.1 - - 0.1lO

inpt &PC act C - 5.0 - - 5.0 - O

input Reitac ri 1012 - - 1012 n

Total Harmonic Oiatonmon THD - 0 - 0.06
AV- .110. Il 2.0 I. 2.0 4Vo S20 Vo- , I - 10 kHz 00

Channel Separatiot (f- - 10kz Il 120 -4~ - 120 -

Open-Loop OutpujtImpedanceaIt - 1.0M~z) 0 - 3S 35

TYPICA PEFORMAUNCE CURVE

PKKW. I - MOWU COma.N MOO VOLTAGE RANE PamE 2 - WJT ma" 1

zl wail 100KUU-

-W I 'MO

IA
*25 *M0 -15 *lG0 .Il -, -3 a0 5 W 15 too in

T4,"' I11 A E T 111116111111.11J raTl, 11111I EW A M r

MOTOROLA LI NEAR/INTER FACE DEVICES

2-286

MC3408O, MC3508 Series

ROURE 3 -INPUT SIAS CURRENT venu RGURE 4 -OUTPUT VOLTAGE SWING
INPUT CONRMONwMOOS VOLTAGE venue SUPPLY VOLTAGE

120 4 T
TA 2VC 25'C-

RL~ -i.--fR --. It

-1 o -40 08o00 12 0 5.0 =10 =15 :2o =25

VC, iNPLIT COMtdOt44dO VOIJAGE VOLTS1 VCCVEE, SUPPLY WCLAGE (VCLTS)

FIGUIRI 5 -OUTPUT SATURATION venus FlOURS - OUTPUFT SATURATION venue
LOAD CURRIENT LOAD RESISTANCE TO GROUND

20 CCV0 : ±iV~ !~ I" -

2. V10E 2 S 40

[20

0 o & 120 -6 -21) 30K 2 30 K 300111
'L LOADCURRESTNCTV I C II) TL 0AO SSTANa IfTO GROUN 1111

MOWNUTOOL LiNEAR/INTERFACE DEVICES
0 7M-+--LJI I 2-287 4

MC34060, MC35080 Series

FIGUNIE 9 - OUTPUT W90AWANC vemm FREQUECY FIGUfh 10 - OUTPUT WPEANCE vwuim PFEOUENCV

ID

VOVCV -0 SV

TA - 25- TA-21
Cllp0..da nt0*Un k

ROK G 11 UTu VONLTAGElo IWN ROK 10K ou 00K IS~hO owm lGUNC

I WUENCY lHz) I. OWNCY 1Hz)

ROMG 11- OUTPUTO VOLTAGE GWM

IN6 - -- *~4.S

rm - -o

-u -as I I2 I0 -I .10 .

TA.~~- -- T .MH 2KWRTU

MOTOROLA ~ ~ ~ Lh LIERITRFC*EIE
to - ýý - I\ :ý ! , i -=-: , AV--100

C3 MOWN06 Series

FIGUREI 14 - OPEN-LOOP VOL.TAGE GAIN AND FIGURE 11 - OPtN.LoOP VOLTAGE GM9 AD mIan

PHA*SE vmu a FREQUE N4CY wee s FREQUNCY

lo - . I 1
20~~*I ~-~~

G __,vE. s 0D

-- - -5C 0 -0m

Oiiiii~i -L01 Cww .OomivdU. 3.0 T0701Ism

40 IN .11 I I , ;

2 01 3 L0
1.0

I t'0 2

20 :

*,0 1- kj
es ~ ~ ~ ~ ~ ~ ~ ~ ~ C SamO CADITAc Cww-c w wUmto I [-t R -k o

MOTOROLAM LIEA/NTRFC DVIE

MC34080, MC35080 Series

FIGURE 20 - GAIN MARGIN verms LOAD CAPACIANCE FIGURE 21 - PfIASE MARGIN versio TEMIPERATURE

CL 'Op 0.d.0vaOsao. ~ so

.Iv -~ - -~-w-pd

UrinsL AV 0Cahd n ov -IS 00 1 Unt A~V 2

'OK -3 -25vt lo5 0 5

TAUR -2 NOAL SEWRAEveu

20 f5C J'Units lI5'I45 AVy 20 - V11 5 V 1qm ujuref"

11 VC 0i OK svr-6 am25 00s s i

CL LOD CAACITAE 0,
T
A. AMIIT TEWEJATUR (-C)

FIGREn GA MRGNMoasTOROLRALNER/INTRAE DEVICESS0014
sold 6o vos- omoth m uitsAV 10 2-290 5

MC34 080. MC35080 Series

mc34m TRANSIENT RESPONSE
AV - + 1.0, RL = 2.0 k, VcCVEE ±15 V, TA = 25*C

RM 324 - SMALL-SIGNAL ROUIE 2 - LAN-8OMAL

vWbw. - So mY orv yu ,- 5.0 Wov
Hww 02 AVONv No= - 0.5 0

MC TRANSENT RESPONSE
AV = +2.0, RL a 2.0 k. VCCVEE " ±V. TA a 21

0 SF UE - IMALL4-RIONU IOUE V7- W

Vomtn• - 01 AV;ONv L - o~pF
CILma o0 p dOv L- m

0-

MOTOROLA LINEAR/INTERFACE DEVICES

2-291

MC34080, MC35060 Seigs

FIGURE 283- COMMON-MODE REJECTION RATIO FlOURE 23 - POWER SUPPLY REAECTION RATIO
vqssFREQUENCY vwenu FREQUENCYUcVE -12V 0VE ,- s

gloEVII .02
so 'A %'0 '0 lO 1. 0 VO IO 0 0 00 0 OU 1W '

I~~~~~o FN-EC ov EIAEY1

20
0

Of Iao 10SU P ...ooVNf I K 1K±IIVm lm1 10 o lo Il 1K I l

ATA -iSVc

Eu f ~ 110 -F

-a~ ~ ~V -'~ ui is ±

I T

0V - 0

I0 IO Hil IW I0 I ICEI I l 1IOU 1 111
REQUENCYOW - 15WC V,

MOTOROLA1111 LIERINEFC 1EIE

2-29LI2H 1111

MC34080. MC35M6 Series

AP£ICAT0 M 9IPON M110AI ative rail (VEE). The amplifier remains active if the inputs
The bandwidth and slew rate of the MC34080 series are biased at the positive rail. This may be useful for

is nearly double that of currently available general pur- some applications in that single supply operation is Poe-
pose JFET op-amps. This improvement in ac perfor- sible with a single negative supply. However, a degra-
mince is due to the P-channel JFET differential input dation of offset voltage and voltage gain may result.
stage driving a compensated miller integration ampli- Phase reversal does not Occur if either the inverting
tier in conjunction with an all NPN output stage. or noninverting input for both) exceeds the positive

The all NPN output stage offers unique advantages common mode limit. If either input lar both) exceeds
over the more conventional NPNiPNP transistor Class the negative common mode limit, the output will be in
AS output stage. With a 10k load resistance, the op-amo the high state. The input stage also allows a differential
can typically swing within 1.0 V of the positive rail IVCC), up to =44 volts, provided the maximum input voltage
and within 0.3 volts of the negative rail IVEEI. providing range is not exceeded. The supply voltge operating
a 23.7 Vp-p swing from = 15 volt supplies. This large range is from =5.0 V to =-22 V.
output swing becomes most noticeable at lower supply For optimum frequency performance end stability
voltages. If the load resistance is referenced to VCC careful component placement and printed circuit board
insteed of ground, the maximum possible output swing layout should be exercised. For example, long un-
can be achieved for a given supply voltage. For light shielded input or output leads may reauit in unwanted
load currents, the load resistance will pull the output to input-output coupling. In order to reduce the input ca-
VCC during the positive swing and the NPN output tran- pcitalnce reMisors connected to the input pins should
sistor will pull the output very near VrE during the nag- be physically close to these pine. This not only mini.
ative swing. The load resistance value should be much mizes the input pole for optimum frequency response,
lesa than that of the feedback resistance to maximize but also minimizes extraneous "picup" at this node.
pull-up capability. Supply deicoupling with adequate capacitance close

The all NPN transistor output stage is also inherently to the supply pin is also importanft particularly over
fast. contributing to the operational amplifier's high temperature, since many types of decoupling clepcitors
gain-bandwidth product and fast settling time. The as- exhibit Ilrge impedance challinge over tempoerat.
Sociated high frequency output impedance is 50 ohms Primarily due to the JFrT inputs of the op amp, the
ftylical at 8.0 MHz. This allows driving capacitive loads input offslt voltage may change due to temperature
from 0 to 300 pF without oscillations over the military cycling and board soldering. After 20 temperaturetemperaturse range, and over the full range of output cycles I - SC to 1 6"C). the typIcal standard deviation
swing. The W6 phase margin and 7.6 dO gain margin for input offst voltage is 509 1 V and 473 IV in the
as well as the goeneiral gain and phase characteristica plastic and cenramic packsign respectively. With respect
are virtually independent of the sinisource output to board soldering (260C, 10 sacondl) the typical stan-
swing conditions. The high frequency characteristics of dard deviation for input offe vo is1 Sn V and
the MC3400 sri0es is esapecillly useful for active filter 227 /V in the plastic and ceramic package respectively.
applications. Socketed plastic or ceramic packaged devices should

The common mode input range is from 2.0 volts be- be used over a minimal temperature range for optimum
low the positive rail (VCC) to 4.0 volts above the nag. input o voltage performance.

IRGUIII 34 -- OPlLT NU.MG c1:1141

VCC

3 7

2, 1

VEE

MOTOROLA LINEAR/INTERFACE DEVICES

2-293

0

Appendix G - PCB layouts

0

0

M urno no no

0 0
0 0

o 0 0 0 0 0 .. go 0097

0

a
a

an :PI

an
a a a a an

LIL I In

BancoD comJO

r©' © a oaO

UU

o 0 0 0 0 *000 000

0]

0 0]

"@00 °0"°0

cn1

_0f e b~ -ob bob b'b wob9 0-0

o 0 0 0 0 0 00

b ba

0

b
b

ibb

~bb 1
"a 'a 3 a abbp

b bb

F.a'aaaO-aH Daaaaa-a a

Appendix G - Parts Data Sheets

O Customer Application Technical Summary
UCORPORATION

I' VI-100/200 DC to DC Converters
23 Frontage Rd. Andover, MA 01810

TEL: (617) 470-2900
FAX: (617) 475-6715
TVX: 910-38-5144 THERMAL CONSIDERATIONS
Effective July 16, 19•8
our area code (617) will
change to (508).It

jto icor manufactures standard component power converters, that are the analog to
V very efficient three terminal regulators. Cooling must be provided by external

means. The factor that must be controlled by the system designer is the thermal
resistance of the baseplate to free air, which in turn determines the baseplate operating
temperature. The thermal resistance of the baseplate to air can be controlled by
maintaining the ambient temperature, moving air over the baseplate, adding a heatsink
to the module, or mounting the module to a cold plate such as the system chassis.

The heat that is dissipated by a Vicor converter is related to the output power of the
module and the efficiency of the module. Vicor converters are among the most efficient
available today. They are also the smallest. The effective dissipation per square inch of
surface area can be very high, relative to traditional types of supplies, but remains very
low compared to power transistors and complex logic circuits. For additional
information, consult Vicor's application note: Cooling High Density DC/DC Converters.

The following variables should be considered in the design of an effective cooling system
for Vicor modules:

"" Efficiency of the module (refer to data sheet)
a Thermal resistance, baseplate to environment
"* Maximum ambient temperature
"* Amount of air flow, as it relates to thermal resistance

Figure 1. Thermal Resistance, Baseplate to Free Air

VI-100/VI-200
Air Flow (No Heat Sink)
Free Air 5.000 C/W
100 LFM 3.30°C/W
200 LFM 2.000 C/W
300 LFM 1.38°C/W
400 LFM 1.26 0C/W
500 LFM 1.15°C/W
600 LFM 1.07°C/W
700 LFM 0.990C/W
800 LFM 0.910 C/W

VI-100/200 ADJUSTMENT PROCEDURE
Definition: Adjustment range of the output voltage, as a percent of nominal.

It should be noted that several specifications are a function of nominal output voltage
settings, such as efficiency, ripple and input voltage range. In general as the output
voltage is trimmed down, efficiency goes down, ripple as a percent of VOLT goes up
(although actual peak to peak level remains essentially constant) and lastly, input voltage
range widens since input dropout (loss of regulation) moves down. As the units are
trimmed up the reverse of the above effects occur.

All Vicor converters have a fixed current limit. As the output voltage is trimmed down
the current limit set point remains constant. Therefore, in terms of output power, if the
unit is trimmed down 20%, the available output power drops by 20%. Do not exceed
maximum power rating when unit is trimmed up in voltage.

VI-200 converters have a very wide range of adjustability that can prove beneficial to the
user. The output of a VI-200 can be reduced to zero volts with secondary side only
circuitry. VI-200's can be used in power amplifier applications requiring fast
programmability. VI-200 converters exhibit a rise time of approximately 10mS. In many
instances this feature will provide a solution for those systems requiring "odd" output
voltages. VI-200 converters are switch-mode power supplies, therefore a load is required
to program the output voltage to zero volts. Consult catalog for additional information.

Although VI-100 converters may be trimmed down in excess of 2 0%, the specified
adjustment range is - 20%. VI-100's are not characterized for operation below this range.

Both series of converters have a practical limit of + 10% on trim range, due to a fixed
over-voltage set point. Although they can be adjusted up higher, the output may run
into OVP. In practice there should be 0.5 Volts minimum between VOUT and OVP,
ensuring that OVP will not be activated during transient events. This is very important
on VI-200 converters, since the OVP is of a latching type.

Please refer to Figure 2, for the correct adjustment procedure for VI-100 and VI-200
series converters.

Figure 2. Adjustment Procedure

V'-100
VI-100 Inrnal Values.Outpul VoIage INTERNAL I - EXTERNAL

volts 5V 12V 15V 24V 48V

R2 10 19 25 86 18 2 VI-l• Rl 100QERROR AMP s
R3 10 10 10 10 100 E AMP, -

1'0 0 48 0 48 10 '

K OHMS
2FI

K H S•R3
T R7 LOAD

VI-1O0 Trim Valves
.'

Range .10% +10% +I0% +10% +9% AA

-20% -20% -20% -20% -20% i O

R6 0150 12 22 67 250

R7 10 10 T0 tO 100 I l

R8 0 56 0 33 0 39 0 68 0 0

K OHMS

VI-200
INTERNAL A - EXTERNAL-----

vt-rn. Meg aMd MasUr Medu .0
•enWvm-oa Q•VI-200 /l14

0ots 5V 12V 15V 24V 48V ERROR AMP 1
R2 20 76 10 172 364))•

lt 76to

R3 20 20 20 T20 202

K OHMS

V11-21, 11 s W ad MasMr Medls. R7 IOK

Trim V R3 20K

Range +110% ,+10% +110% + 10% + 10% -S
- 00% 100% -t00% -100% -100% 2 I-

R6 92 35 46 79 T67 RANDGAP i R4 2000

9 OHMS

At and R4 vary as a function of input voltage. RECOMMENDED TRIM VALUES FOR .10%, - 100% TRIM RANGE:
output voltage and output power F . 1 V MiZ7 xIc

3

REMOTE SENSE LINES
Vicor converters provide two pins (+ S, - S) that allow the output error amplifier to
sense output voltage so that output voltage may be accurately defined at one point. This
point may be "local" to the module, or it may be "remote" at the actual point of load. If
the sense pins are left unconnected, the output voltage will be above nominal and load
regulation will be poor. Although sense lines may be of any length, the converter %will
only compensate for a finite drop in the output lines. Consult data sheet for remote
sense compensation specifications. Long sense lines should be twisted or otherwvise
shielded to minimize noise pickup. If the module is affected by noise pickup, capacitors
should be added from each sense pin to its respective output to close the feedback loop
locally (AC).

CONNECTION OF BOOSTER MODULES
Power boosters are used in applications requiring higher output current than an
individual driver module is capable of providing. VI-200 driver modules may be used as
boosters, by trimming up the output voltage 10%. This essentially allows the unit to be
controlled by another driver module. Current sharing between driver and booster
converters occurs naturally regardless of the number of boosters. Any number of
boosters may be added to a driver module. Boosters must be of the same family (VI-100
or VI-200) and of the same input voltage, output voltage and output power.

Connect the converters as follows:

VOTES: INPUT U _.._ OUTPUT
+o--+IN +OUT 3 . --. •

NC = Do not connect, internal
circuitry may be present. - -SS IN ZERO CURRENT + $DISABLE SWTTCH" TW N

RI, R2 installed if trim desired. GATE #1

See Adjustment Procedure.T -S

. re installed only if drivers-IN -OUT

sed in respective positions.

S EGATE R S

nr"t OrUrt (BOOCTER)-:-IN OUT

[ft.

._,GATE +S ,
-- IN ZERO CURRENT

SWITCHING TRIM,, '
GATE CONVERTER

NC O• N -S -
(BOOSTER) ' "

---IN -OUT •i..

SAFETY AGENCY CONSIDERATIONS (VI-200 Series)
In order to meet the requirements of UL 478, CSA 22.2 and TUV (IEC 380), certain

precautions must be excercised.

1. Input Voltage: Do not exceed input voltage rating of converter.
2. Baseplate: If the baseplate of the converter is accessible to the operator of the

equipment, ground the baseplate to chassis ground.
3. Temperature: Under normal operating conditions the temperature of the baseplate

must be 85 C or less at the middle mounting slot of the converter. Temperature must
be verified at maximum system load and maximum, system specified, ambient
temperature.

4. Trimming: Do not trim output voltage higher than 110% of nominal rated output
voltage. Do not exceed rated output power when unit is trimmed up. If converter is
trimmed down, maximum output current is constant, therefore total available output
power will be less than rated output power. Observe the same precautions when
using output sense.

5. Overtemperature Shutdown: If the internal temperature of the module exceeds
90-105'C the module will shut down. The module must be cooled down and input
voltage recycled to re-start the converter.

6. External Protection: Required. Each converter must be fused separately with:
Bussman Mfg. Co., PC-Tron 250V, Max. 3A.

ADDITIONAL FILTERING - IF DESIRED
Vicor's zero-current-switching converters do not generally require additional filtering. In
applications where particularly low levels of noise are specified, some of the components
shown below may be employed to advantage. Consult Vicor's applications engineering.

INPUT INPUT OUTPUT
COMMON MODE DIFFERENTIAL DIFFERENTIAL

NOTES:I
1. Specific values vary by model. L2 U U L3

2. C3 is Aluminum Electrolytic 7--• -4+1N +OUT --
(Lossy). N • + $ -•

3. If L3, C8 corner frequency isC7- GI mfimTM.5 7
<65 KHz, use Rl, C7. C2 • OUT

4. Ri, C7 (if used) corner "!-
-

frequency should be < I kHz CI L n C4

5. C4, I00pf ceramic with short
ads.

GENERAL APPLICATION INFORMATION
Label: There is no need to remove the label on Vicor products. The thermal drop across
the label is very low. VI-200 series converters may be ordered without a label if desired.
If the converter is mounted to a chassis or heatsink, apply a 5 mil coating of thermal
compound to the label surface, or use GRAFOIL thermally conductive sheeting. Consult
the Vicor Product Catalog for ordering information.
Reverse Input Voltage: Two methods exist to protect against reverse inputs. A diode
may be added in series with the input or in the alternative, fuse the individual converter
with a fuse rated at no more the 2X maximum input current at low line, and add a shunt
diode across the input.

External Voltage Applied To Outputs: External voltages up to 125% of nominal output
may be applied when unit is either unpowered or disabled.
Common Mode Noise: The small amount of common mode noise current flowing
between primary and secondary may in some instances cause the module to fail to
deliver full power or to make audible noise. In this event bypass the baseplate of the
converter by installing a 10OOpf ceramic capacitor, with short leads, between (-) output
and the base and (-) input and the base.
Measuring Output Ripple: Output differential ripple is the AC component present on
the output that is not common to an output or its return. The most accurate way to
measure this parameter is to power the converter from a battery. A battery is used to
virtually eliminate common-mode noise that is often confused with differential output
noise. If powering the converter from a battery is not feasible, a reasonably accurate
measurement can still be made by keeping the scope ground lead as short as possible.
The ground lead of a scope has inductance that is not present in the signal lead. This
differential inductance converts the common-mode noise into differential noise as
viewed by the scope. Vicor converters have a half sine power pulse that is filtered
through an LC. The module contains no discontinuities in secondary side voltage
waveforms that create high dv/dt's causing output "spikes", virtually eliminating output
"spikes".

2906 REV 1 618

1 VICOR Customer Application Technical Summary
VI-100/200 DC to DC Converters

23 Frontage Rd. Andover, MA 01810

TEL: (617) 470-2900
FAX: (617) 475-67B5

vWX: 910-380-5144 THERMAL CONSIDERATIONS
Effective July 16, 1968
our area code (617) willchange to (506). "

c oicor manufactures standard component power converters, that are the analog to
Vvery efficient three terminal regulators. Cooling must be provided by external

means. The factor that must be controlled by the system designer is the thermal
resistance of the baseplate to free air, which in turn determines the baseplate operating
temperature. The thermal resistance of the baseplate to air can be controlled by
maintaining the ambient temperature, moving air over the baseplate, adding a heatsink
to the module, or mounting the module to a cold plate such as the system chassis.

The heat that is dissipated by a Vicor converter is related to the output power of the
module and the efficiency of the module. Vicor converters are among the most efficient
available today. They are also the smallest. The effective dissipation per square inch of
surface area can be very high, relative to traditional types of supplies, but remains very
low compared to power transistors and complex logic circuits. For additional
information, consult Vicor's application note: Cooling High Density DC/DC Converters.

The following variables should be considered in the design of an effective cooling system
for Vicor modules:

a Efficiency of the module (refer to data sheet)
a Thermal resistance, baseplate to environment
m Maximum ambient temperature
w Amount of air flow, as it relates to thermal resistance

Figure 1. Thermal Resistance, Baseplate to Free Air

VI-100/VI-200
Air Flow (No Heat Sink)
Free Air 5.000 C/W
100 LFM 3.30°C/W
200 LFM 2.00°C/W
300 LFM 1.38°C/W
400 LFM 1.260C/W
500 LFM 1.15 0C/W
600 LFM 1.07°C/W
700 LFM 0.990 C/W
800 LFM 0.910C/W

VI-100/200 ADJUSTMENT PROCEDURE
Definition: Adjustment range of the output voltage, as a percent of nominal.

It should be noted that several specifications are a function of nominal output voltage
settings, such as efficiency, ripple and input voltage range. In general as the output
voltage is trimmed down, efficiency goes down, ripple as a percent of VOUT goes up
(although actual peak to peak level remains essentially constant) and lastly, input voltage
range widens since input dropout (loss of regulation) moves down. As the units are
trimmed up the reverse of the above effects occur.

All Vicor converters have a fixed current limit. As the output voltage is trimmed down
the current limit set point remains constant. Therefore, in terms of output power, if the
unit is trimmed down 20%, the available output power drops by 20%. Do not exceed
maximum power rating when unit is trimmed up in voltage.

VI-200 converters have a very wide range of adjustability that can prove beneficial to the
user. The output of a VI-200 can be reduced to zero volts with secondary side only
circuitry. VI-200's can be used in power amplifier applications requiring fast
programmability. VI-200 converters exhibit a rise time of approximately 10mS. In many
instances this feature will provide a solution for those systems requiring "odd" output
volt.6es. VI-200 converters are switch-mode power supplies, therefore a load is required
to program the output voltage to zero volts. Consult catalog for additional information.

Although VI-100 converters may be trimmed down in excess of 20%, the specified
adjustment range is -20%. VI-100's are not characterized for operation below this range.

Both series of converters have a practical limit of + 10% on trim range, due to a fixed
over-voltage set point. Although they can be adjusted up higher, the output may run
into OVP. In practice there should be 0.5 Volts minimum between VOUT and OVP,
ensuring that OVP will not be activated during transient events. This is very important
on V[-200 converters, since the OVP is of a latching type.

Please refer to Figure 2, for the correct adjustment procedure for VI-100 and VI-200
series converters.

Figure 2. Adjustment Procedure

VI-100
Wl-tU lulaw Vahe-O0" V~ INTERNAL I EXTERNAL

volts 5V 12V 15V 24V 48V
R2 O19 25 8 6 vI-100 0R2 1 0 9 2 5 8 6 •82 ERROR AMP

R3 10 10 10 10 100

10 048 0 48 10To

K OHMS 3 T R LOAD
VI-lU Trim Values

Range +.10% +10% +10% +10% .9% 2 R4 IRS

-20% -20%. -20% -20% -20% BANOGAp S
R6 0150 12 22 67 250

R7 10 10 10 10 100 RS low

R8 056 033 039 088 0 0

K OHMS

VI-200
IsMe sopul maw INTERNAL A 0 EXTERNAL l

MWt vdMeg. Ms Mvdule/

VOlt2 5V tv 15V 24V 48V ERROR AMP

120 76 100 172 364

LOAD

+ TT.
Trim20 11011201

Rangew 10% +10% +10% .10% +10%

-100% -100% -100% -100% -100%

R1 9 2 35 46 79 167 BANDGAP i R4 20-9

K OHMS

Rl and RP vary aa a function of input voltage. RECOMMENDED TRIM VALUES FOR + 10%. - 100% TRIM RANGE:
output voltage and output power RG - 1.1 XYVnom - 2.75 I 10K

3

REMOTE SENSE LINES
Vicor converters provide two pins (+ S, - S) that allow the output error amplifier to
sense output voltage so that output voltage may be accurately defined at one point. This
point may be "local" to the module, or it may be "remote" at the actual point of load. If
the sense pins are left unconnected, the output voltage will be above nominal and load
regulation will be poor. Although sense lines may be of any length, the converter will
only compensate for a finite drop in the output lines. Consult data sheet for remote
sense compensation specifications. Long sense lines should be twisted or otherwise
shielded to minimize noise pickup. If the module is affected by noise pickup, capacitors
should be added from each sense pin to its respective output to close the feedback loop
locally (AC).

CONNECTION OF BOOSTER MODULES
Power boosters are used in applications requiring higher output current than an
individual driver module is capable of providing. VI-200 driver modules may be used as
boosters, by trimming up the output voltage 10%. This essentially allows the unit to be
controlled by another driver module. Current sharing between driver and booster
converters occurs naturally regardless of the number of boosters. Any number of
boosters may be added to a driver module. Boosters must be of the same family (VI-100
or VI-200) and of the same input voltage, output voltage and output power.

Connect the converters as follows:

NOTES: INPUT U OUTPUT

I. NC - Do not connect, internal

circuitry may be present. - IN ZERO CU1ETDISABLE S$WITCHING TW N
2. RI, R2 installed if trim desired. CONVERTERGATE #1-S

See Adjustment Procedure. OUT

3. are installed only if drivers -- IN -OUT

Iased in respective positions. n

SAETIN ZEAOCUORENT +(SerIes)$WITCHlNG EADSCONVBERTEGATE #2 _$..
• 'e OUT(B

O T RO
T

S: IN ra T o cnetr

+ +IN + OUT•

2I GATE of teOCnv i ssb NCto
SWITCHIING TMll *

NC GATE COINVENllR
N C " O U T ON -S .

(BOOSTER)
--- IN-O T - .. -

nN OUTPUT

SAFETY AGENCY CONSIDERATIONS (Vl-200 Series)

In order to meet the requirements of UL 478, CSA 22.2 and TUV (IEC 380), certain
precautions must be excercised.

1. Input Voltage: Do not exceed input voltage rating of converter.
2. 1Baseplate: If the baseplate of the converter is accessible to the operator of the

equipment, ground the baseplate to chassis ground.
3. Temperature: Under normal operating conditions the temperature of the baseplate

must be 85 C or less at the middle mounting slot of the converter. Temperature must
be verified at maximum system load and maximum, system specified, ambient
temperature.

4. Trimming: Do not trim output voltage higher than 110% of nominal rated output
voltage. Do not exceed rated output power when unit is trimmed up. If converter is
trimmed down, maximum output current is constant, therefore total available output
power will be less than rated output power. Observe the same precautions when
using output sense.

5. Overtemperature Shutdown: If the internal temperature of the module exceeds
90-105'C the module will shut down. The module must be cooled down and input
voltage recycled to re-start the converter.

6. External Protection: Required. Each converter must be fused separately with:
Bussman Mfg. Co., PC-Tron 250V, Max. 3A.

ADDITIONAL FILTERING - IF DESIRED
Vicor's zero-current-switching converters do not generally require additional filtering. In
applications where particularly low levels of noise are specified, some of the components
shown below may be employed to advantage. Consult Vicor's applications engineering.

INPUT INPUT OUTPUT
NOTES: COMMON MODE DIFFEIENTIAL DIFFERENTIAL

1. Specific values vary by model. L2 U L3

2. C3 is Aluminum Electrolytic C I U I
(Loss y). I 11""

3. If L3, C8 corner frequency is _ -7
<65 KHz, use RI1, C7. C2 LI U

4. RI, C7 (if used) corner I
frequency should be < I kHz C4 n C4

5. C4, lOOpf ceramic with short T :
ads.

GENERAL APPLICATION INFORMATION

Label: There is no need to remove the label on Vicor products. The thermal drop across
the label is very low. VI-200 series converters may be ordered without a label if desired.
If the converter is mounted to a chassis or heatsink, apply a 5 mil coating of thermal
compound to the label surface, or use GRAFOIL thermally conductive sheeting. Consult
the Vicor Product Catalog for ordering information.
Reverse Input Voltage: Two methods exist to protect against reverse inputs. A diode
may be added in series with the input or in the alternative, fuse the individual converter
with a fuse rated at no more the 2X maximum input current at low line, and add a shunt
diode across the input.

External Voltage Applied To Outputs: External voltages up to 125% of nominal output
may be applied when unit is either unpowered or disabled.
Common Mode Noise: The small amount of common mode noise current flowing
between primary and secondary may in some instances cause the module to fail to
deliver full power or to make audible noise. In this event bypass the baseplate of the
converter by installing a 10OOpf ceramic capacitor, with short leads, between (-) output
and the base and (-) input and the base.
Measuring Output Ripple: Output differential ripple is the AC component present on
the output that is not common to an output or its return. The most accurate way to
measure this parameter is to power the converter from a battery. A battery is used to
virtually eliminate common-mode noise that is often confused with differential output
noise. If powering the converter from a battery is not feasible, a reasonably accurate
measurement can still be made by keeping the scope ground lead as short as possible.
The ground lead of a scope has inductance that is not present in the signal lead. This
differential inductance converts the common-mode noise into differential noise as
viewed by the scope. Vicor converters have a half sine power pulse that is filtered
through an LC. The module contains no discontinuities in secondary side voltage
waveforms that create high dv/dt's causing output "spikes", virtually eliminating output
"spikes".

2806 REV 1 6/8

0

Appendix H - Display Board

0

Appendix H - PCB Schematics

- 0)

0))

a)>Q a +: (a

(DOO O AnI 0

<0 x m

CLu

00
&

I'

++

-4 0OA3H0

Appendix H - PCB layouts

0

o _ __ _o__ _ __ __ _"_ oo)

0000000000000000000000000-o
0000000000000000000000000 C

-, 00 Q

"n0-0000000000

00000000

c To o

S0 -

CL0 00 00

Ono
00 o0000000000

00000000

00

______ 00

000 000

co m C)•

gap Fl F

000 0-00000 00 00 0 a. 0
n P60OF00q~00v00000000 CML)U

U O CD

[] 1, 1°

0 000
C~C

00

c5ro-

00::Ji~0 0g7
0000

00

1 00

0!0 0!a

0-

0000 0 00-401 Cz

90o r-? (5 0

CO
CC M

Ca O

CnC
><0
CL

00

0-!!u1 00314

0-

0000~~~ 0 bndOu

a00 a@-000000 % 'D

C Go

0
Uo

a~0 g P 0 go 800 L

00

N. N MC

Qb-0

0%-- - fl oU S-0- N 0I N

00 00\0

Cb 4 46 nb C --% --%- u % j

@00 000 000
.. V 0 P- AD InC V-

--V 0 0 0

0

Appendix H - Parts Data Sheets

0

0

ACCUILEX P-2000
A METRABYTE COMPANY SERIES

I FEA TURES

* Multiple Ranges (User Configurablel
U Large (10 mM), 4 1/2 Digit Enhanced Contrast LCD Display

* Very Low Power Consumption (17.5 milliWatts)
* Choice of Decimal Point Placement.i 1 Extreme Accuracy t0.06%, ±1 Digit)
* Common Mode Rejection of 86 db (min)
* Very Low Cost
* World's Smallest Size

- 1.34 .APPLICATIONS
* Automottve/Marine/AvionicslAerospace

Field/Mobile InstrumentationPharmaceutical Manufacturing
SElectronic Test
* Blochemlcal/Blomedlcal Research & Product Development
* Petrochemical Process Management

E Energy/Environmental Management
SCritical Accuracy Voltage Measurements

FUNCTIONAL DESCRIPTION BLOCK DIAGRAM
The DP-2000 is a very compact, 4 1/2 digit, low power 117.5 mllilWatts),
LCD Digital Panel Meter covering a broad range of critical voltage mea-
surement applications for the industrial sector, the Original Equipment
Instrument Manufacturer, and other areas where high accuracy and
precise resolution over extended periods are crucial. The combination of -P4 opý DP2 Dp, DI _o0

VLSI components and ACCULEX's well known dedication to advanced Sur-
face Mount Technology (SMT) results In the most reliable, lowest cost,
highest resolution LCD Digital Panel Meter available from any source.
The DP-2000 is a multi-range voltage input DPM with user configurable
full scale input ranges (± 200 mY or ± 2 Vdcl and choice of decimal point
placement. using a dual slope integrating A/D converter, differential
input, and common mode rejection to 86 db (minimum), the DP-2000 is
a rock solid, state-of-the-art DPM designed to be used in virtually any
environment. Its extremely large 110 mm numeral height) enhanced
contrast 4 1/2 digit LCD display means easy readability In dim light as
well as direct sunlight conditions. Drawing only 3.5 mA @ +5 VdC, the RANGE BC• 3ECOD -'VE-

DP-2000 is perfect for field/mobile instruments, marine, aerospace/
avionics, and automotive applications as well as for general purpose lab-
oratory use or harsh, factory floor environments. The DP-2000 features
a "LOW BATTERY" indicator (low voltage) as well as automatic polarity
and over/under range indication. A "HOLD DISPLAY" pin is also standard SIG ,N
and may be wired to a momentary contact ipushbutton) switch for j S .CPE _ _ _ _

temporarily "freezing" the display. The DP-2000 shares the same overall SIG IN

dimensions and panel cut-out size as the rest of the ACCULEX micro-size
LCD DPM family.
Some of the more common application areas for the DP-2000 are petro- GND `

chemical processing, pharmaceutical manufacturing, biochemical/
biomedical research and product development, plastics manufacturing
and processing, avionics, marine instrumentation, automotive instru-
mentation, food processing, energy management, environmental .. _ -. '

chambers, electronic test and burn-in chambers, power supply monitor-
ing, power transmissions, medical instrumentation and much more.

"CCULEX is Proud to offer the DP-20OO as the worlds smallest, most
cCurate. and lowest cost 4 1/2 digit LCD Digital Panel Meter in the

world. And . . like all ACCULEX products, the DP-20OO is available from
StOCk in quantity or singles

OP-2000 PINOUT SPECSFICATIONS
Analog I1/0
Input Configuration Bipolar, Fully Differential
Full Scale Input OP-2000: ±200 mV

±2 VdC
DP-2002: ±2 VOC

±20 VdC

12 DP-2020: ±20 Vdc
o NC ± 20O VdC
o HOLD DISPLAY Sample Interval 2 readings per second
o RANGE SELECT Accuracy 0.06% of FS ± 1 Digit

50 DP COMMON AiD Converter Type Dual Slope Integration
0osQ DP 4 Input Sias Current 50 pA ItVlP)aI

Niee' Common Mode Voltage ±1 Vdc Imax)Noitc0 DP 2 Common Mode Rejection 86 db (mini
Switch DP 2 Input Polarity Bipolar, automatic changeover

60 Hz 0 SIG IN (-) Input Impedance OP-2000; 1000 M Ohms
0 SIG IN(+) DP-2002; I Meg Ohms
0 GND DP-2020; 10 Meg Ohms

10 + 5 Vdc Input Voltage ±10 Vdc (max) (DOP20001± 10 (0P-2002)
± 350V IDP-2020)

Temperature Coef. ± 50 ppmlDeg C (typ) (DP-2000)SPANO ±75 ppm1Oeg C (all others)ADJ Display

Display Rpe Enhanced Contrast LCD
Number of Digits 4 12(19999, max)
Display Size 10 mm
Over Range Indication 1

R E SELECT. +200 mV (Pin 10 OPEN) low range Under Range Indication -1
±2 Vdc(Fin 10 to +SVd) high range Dlsplay Polarity Positve not dsplayed ("-" for negative)

HOW: Pin 1 to +SVd Display HOld Pin 1 tied to +S Vdc (Pin 1)
Wspay Update Inn 11 Open

SA ADJ: May be adjusted at zero Vd Decimal Point 4 Positions Selectable)
OISE REECTIoN etrical/Environmental

SWI : M b s to decrease 5060 HZ lne noise. Supp Voltage +S Vd ±7%) @ 3.5 mA
Other Low Battery Indication (Low Voltage)
Storage Temp -10 to 60Deg C
Oeatng Temp 0to Deg C
Weight 30 gramns
Dimensions 2.33" W)x1.14"(H)xO.83"(01

(59x29x2l Mm)

OUTLINE DRAWING

/26

74

_______________________UNIT IN MM

Atom NO. RAN=E PRIE (WE O
DP-2000 ±200 mV $95.00

±2 VdC

185 I0 ±2OVdc $95.00S•± 20 Vdc

DP-2M20 ±20 Vdc
________________ ±200 Vdc

123 - UUUUU UUUU c-12 (Connector) S4.00

2.5°a
OP40O0 6 90 $85 S79 S73 can

C-12 $4.00 S3.50 S3.25 53.00

38 A METRASYTE CCXVDNY ,..mMM aM81111en.I

DIMENSIONS, PANEL CUT-OUT,
AND MOUNTING SUGGESTIONS

0
The DP16 nma be mounW tedMf or WtOut the optona Bezel. Use the
following diagram and dimfosions for accurate mounting.

L.4 60 NoI

.24 _-_2.36 DIMENSIONS (MM/IN.)

S2._5 [D(4)

.. 09

1.18

0 0

BEZEL OPTION

',2.5 R mmx(4)44
•010 PANEL CUTOUT 34.3

1.281

625 64.5
2.46 2.54 35

AN 40 thes m- have tfe same external dmnsonMS (L &
WO the det is k .ftm prdu Is + 0.010
qut tagtor ward- sine hey ~anhgtd bezel wit "Rabbit- 2.1-0.000op 0.+00 5

'ear7tpemont. The DP-660.7 70, and 2000 1a1e a depth Of 19.5 MM 56 0
wheies the 0P-650' eth Is 8.5 mm. The fo gpa cut-out di- 0.00)

sh dfor acurae mounting.

PANEL 1.02 - 0.000
CUT-OUT 26+ 0.05)S- 0.00)

_1.1 0.29

19(29---) (7.4) 0

-
0.25 (26)

S(6.35) DIA.

(8.9) 0.26
0.35 0.12 • i47 • 6,6)
(8.9)(3

Appendix I - Mizar 8605 Analog Input Board Manual

0

0

Mizar Inc.

MZ 8605 Analog Input Module
User's Manual

Board Revision(s) C

Publication No. 710140033-0001

If you have any technical questions about this product, call Mizar Inc. at

(612) 224-6941 and ask for the "Technical Support Center".

Fourth Edition
Copyright 1986 by Mizar Inc.

MIZAR, INC.
VME Bus Modules & Systems Customer

SSTD Bus Modules & Systems Report

Thank You
Thank you for being a Mizar customer. Mizar would like you to join our Engineering Design Team by inviting
your suggestions on its products and documentation. Please complete and return this self addressed
stamped Customer Report Form.

Product No./Rev. No. Manual Rev.

COMMENTS:

Current VME or STD Application:

Name Title

0 Company Phone (
W Address If you have a question or suggestion that requires

immediate attention, please contact Mizar's
City Engineering Design Team at our Technical Support

State Zip_ Center: (612) 224-8941.

Mail Drop

This board contaimn oomponts that are Susoeptible to static discharge,
sad 1otuld be handLed withP a_-opriate caution.

upon receipt oa this product, visually inspect the board for missing,
broken or damaged components and for physical damage to the printed circuit
board or connectors.

This product was shipped in perfect condition. Any damage to the product
is the responsibility of the shipping carrier and should be reported to the
carriers agent imediately.

Mizsar warrants that the articles furnished hereunder are free from defects
in material and workmanship and will perform as specified by Kizar for one
year from date of shipment. This warranty is in lieu of any other
warranty, expressed or implied. In no event will Mizar be liable for
special or consequential damages as a result of any alleged breach of this
warranty provision. The liability of Mizar hereunder shall be limited to
repair or replacement, at manufacture's discretion, of any defective unit.

* Equipment or parts which have been subject to abuse, misuse, accident,
alteration, neglect, unauthorized repair or installation are not covered by
warranty. Mizar shall have the right of final determination as to the
existence and oase of defect.

The information in this document has been carefully chocked and is believed
to be entirely reliable. However, no responsibility is assumed for
inaccuracies. Furthermore, Mizar reserves the right to make changes to any
products herein to improve reliability, function or design. Mizar does not
assume any liability arising out of the application or use of any product
or circuit described herein; neither does it convey any license under its
patent rights or the rights of others.

DATA MWn -- nT

The 83574 A/D converter data sheets are reprinted with the permission of
the Hybrid System Corporation.

. The AD524 Precision Amplifier data sheets are reprinted with the permission
of- Analog Devices Inc.

TABLE OF cUTErTS

CHAPTER 1 GENERAL INFORMATION

1.1 Board Specifications 1-1
1.2 Functional Description 1-1

1.3 Board Revision Differences 1-2
1.4 Data Sheet Included 1-2
1.5 Where to Call for Help 1-2

CHAPTER 2 CONFIGURATION GUIDE

2.1 Introduction 2-1

2.2 Component and Jumper Block Placement 2-1
2.3 Kg: Base Address Selection 2-2
2.4 K8 & K10: Interrupt Request Lines 2-2
2.5 K2: Input Amplifier Gain 2-3
2.6 K1 & K7: Single/Differential Input Select.. 2-3
2.7 K3,K4,K5,K6: Analog-to-Digital Control 2-4

CHAPTER 3 PROGRAMMING GUIDE

3.1 Introduction 3-1
S3.2 Registers 3-1

3.3.1 Conversion Operation 3-1
3.3.2 Input Channel Seleotion 3-2
3.3.2a Non-Expanded Version of the VME8605 3-2
3.3.2b Expanded Version of the VME8605 3-2
3.3.3 Interrupt Operation 3-23.4 Calibration 3-3
3.4. 1 Instrumentation Amplifier Nulling Procedure 3-3
3.4.2 Sample and Sold Nulling- ** 3-3
3.4.3 Analog-to-Digital Chip Calibration 3-3
3.14.•4 Resistor Table 3-3
3.5 Brief Circuit Operation ... 0................ 3-,4
3.6 Input AMP Gain vs. Settling Time........... 3-4
3.7 Analog Input Conneotions 3-14
3.8 Important Note for VME8605 Revisions A,B,C. 3-5
3.9 Prograie ng Examples 3-5
3.9.1 Interrupt Program Example 3-5

CHAPTER 4 THEORY OF OPERATION

4.1I Introduction 4-1

4.2 Addressing and Data Operations 4-1
4.3 Interrupts 4-2
4.4 Multiplexing 4-2

APPENDICES: HS574 Data Sheets A-2
AD524 Data Sheets A-3
Parts i s..... A-4PAL Equations A-6
Schematic A-10

1.1 DO& warC VICATI

Data Transfer Mode: A16:D16

Interrupt Levels: Any one of 1 to 7

Operating Conditions: Temperature: 0 to 700 C
Humidity: 90%

Power Consumption: 1.2 A at 5VDC typical

Physical Size: 160=n by lOOma Single Height Eurocard

1.2 MOSWS VUUCOT Dc.ZhLXVTIUM

The 8605 analog input board provides the user with 16 single ended or 8
double ended analog inputs(or optionally 32 single or 16 double ended
inputs.) A general description of the board is best illustrated by figure
1.

RNALOG
INPUTS

2 4

Figure 1.
Block Diagram

The analog multiplexor (1) selects the appropriate analog input channel the
board is to convert next. The selected signal is then applied single or
double ended across the instrumentation amplifier (2) which can be set for
gains of 1, 10, 100, 1000 or any arbitrary resistor programmed gain. After
being amplified, the input signal is then sampled (and held during the
conversion process) (3), then converted to the digital value by the
successive approximation analog to digital converter (4). When the
conversion is complete the interrupt logic (5), (if enabled), Informs the
CPU of a completed conversion.

CNPTZR 2

COW1ATMMUN GoID=

2.1 nor3TMC

The VME8605 can be configured for a variety of applications using the on-
board jumper blocks labeled [1 - [10. These jumpers are used to specify
the base address, interrupt request levels, amplifier gain, single and
differential input, and analog-to-digital control signals. The purpose of
this chapter is to describe the placement of these jumper blocks on the
board and to explain how to set them for individual user applications.

In the following sections, the pins in the diagrams and on the board are
numbered such that pin 1 is in the upper-left corner and the numbers
increase left-to-right and top to bottom when the component side is up and
the P1 connector is closest to the user. This convention may or may not
agree with the schematic.

. 2.2 CWMOT PLACMT and JOU BLOC LAE~rT

Figure 2 shows the location of the various components used on VME8605.
Figure 3 show the location of the Jumper blocks on the board.

P~~aeaent~t K- U44 I'- •

CIra

U17 L22

Commoent , -. ' • 7....
Placemtent 242-

NIZAR12C.PAGE 2-1

that this block (shown in figure 3) is configured in binary and that a
jumper in place represents a zero in that respective bit, and a missing
jumper represents a one in that respective bit. Figure 3 also shows an
example of K10 and K8 configured for an IRQ level of 4.

K8 & Kil: IRO CONFIGURATION

- ML~ KS:8 INT. RCK.

PIN I 30 0O O 0 82 00

K 10000000 1B 00

IRQ LEVEL 1 2 3 4 5 6 7 80 3 0

EXFMPLE. INTERRUPT REQUEST LEVEL 4
K8. INT. RCK.

PIN I00000 003 C3 82 00

IRQ LEVEL 1 2 3 4 5 6 7 B8 0-0

2.5 K2: Iaput &mifoer Gain

The instrumentation amplifier gain is set using jumper block X2 (and
an external resistor is desired.) Figure 4 shows the pinout of [2. For
proper jumper configuration see the Analog Devices AD524 data sheet
attached. Note that an optional resistor can be placed in position R6 to
set other gains. (R6 is connected from RG1 to 802.) For a gain of one,
remove all jumpers from [2.

K2: INPUT AfIPLIFIER GRIN
PIN 1
RGI 0C0 RG2
Gi 300E RG2

GiOO 0 0 QG2
GiO00 0 0 RG2

PIN 7

2.6 K1 & [7: 31ngle/DIftential Input Selection

Two jumper blocks K1 and K7 determine the input mode of the board.
Below is shown the proper jumper connections of K1 and K7 for single and
differential input operation.

KI &KW: SINGLE/OIFFERENTIRL INPUT

K K7 KI ?

PIN I 0• . N PiN10-E

SINGLE 30 DIFFERENTIAL 3•0
ENDED 00

PNCEPEI"N51 PIN 5

KhR I3C. PA,, 2-3

cHAPTR 3

P1UWRAHKENG GO=3

3.1 M DOMOIR

This chapter will cover a variety of topics relating to the proper
programming and operation of the VME8605 board. Included will be
discussions on register addresses, conversion operations, calibration and
other topics.

3.2 GLMM

The 8605 has 6 registers beginning at the base address as follows:

Address Name R/W Function Length (bits)

0 Converstrt W Start a conversion 16 (all ignored)
2 Chanselect W Select a channel 16 (upper 11 ignored)

and start a conversion
2 AnalogRD R Analog to digital value 16 (lower 12 valid)
4 Intlevel W Interrupt vector 16 (upper 8 ignored)
6 Intenable W Enables interrupts 16 (all ignored)
8 Intdisable W Disables interrupts 16 (all ignored)

Note that all registers are 16 bits long although some bits are ignored.
For proper operation, all writes and reads to the board must be 16 bits
long, i.e. WORD operations. If other than word operations are performed,
the board will not respond.

3.3.1 Conovnuic Opmtiaon

Note that to start a conversion either the converstrt register can be
written to or the channel select register can be written to with the
selected input channel. Once a conversion has been started, do not write
to the ohanselect or oonverstrt registers--this will re-start the
conversion before it has a chance to complete.

The analogRD register is organized as shown in Figure x below.

CIP MSB MSB MSB MSB 10 9 8 7 6 5 4 '3 2 1 LSB

The convert in process (CIP) bit is set if a conversion is taking place and
clears when done. Polling this bit until it clears is one way of testing. for a complete conversion. Note that the most significant bit of the
conversion is brought out to bits 11 through 14, and that all of these bits
may be optionally inverted by jumper block K6.

mum mIc. PA 3-1

3.- CALIBATION

Calibration of the 8605 consists of nulling the instrumentation amplifier,
the sample and hold circuits, and adjusting the offset and gain of the
analog to digital converter. To begin, jumper all blocks as desired except
blocks K1 and k2. Refer to figure 2 for resistor locations.

3..-1 Instruoentation Amplifier Mull1g Proedure
1. Set the gain of the instrumentation amplifier to one-remove

all jumpers from K2 and remove R3 if it is in place.
2. Jumper pin 2 to pins 4 and 6 of K1.
3. Adjust the output offset null (RU) until pin 9 of U6 is 0.000 V.
4. Set the gain of the instrumentation amp to 1000-place a

jumper across pins 7 and 8 of K2.
5. Adjust the input offset null (R2) until pin 9 of U6 is 0.000 V.
6. Repeat steps 1 through 5 until a satisfactory null point is

reached

3.4.2 Sample and Hold Ng

Because the sample and hold network is in the hold mode except when a
conversion is started, a small software routine is required to cause the
network to continuously sample. This is done by a loop that continuously
starts a conversion. With this loop running and pin 9 of U6 near zero,
adjust R7 until the output of the sample and hold network (pin 1 or 4 of
K3)is the same as pin 9 of U6.

3.•.3 Analog to Digtal Chip Calibration

The best description of analog to digital calibration is presented in the
attached Analog Devices AD574 data sheet. To perform the calibration a
small software routine is needed to continuously perform conversions and
read the results (This can be the same routine used in the sample and hold
nulling section.) Run this routine and examine the converted value for use
in the procedure outlined in the data sheet.

3.4.4 Resistor table

R3: Optional instrumentation amplifier gain resistor.
R5: Input offset null for the instrumentation amplifier.
R6: Output offset null for the instrumentation amplifier.
R7: Sample and hold offset null.
RiO: Analog to digital unipolar offset.
R11: Analog to digital bipolar offset.
R12: Analog to digital gain.

MXA1 INC. PACK 3-3

@ 3.8 DMORTAT MMt FOR 8605 Revisloas A, B, and C

Due to an irregularity in the timing of the Hybrid Systems analog to
digital converter, it is possible that the Convert in Process bit (CIP bit)
may indicate valid data up to lOOnS before the data in the analogRD
register is actually valid. This would cause false data to be read if the
read operation occurred during this interval.

To avoid this situation, it is suggested that the analogRD register be read
again after the CIP bit is detected low. This delay will guarantee valid
data for the second read.

Note that in interrupt mode, the built in delay of the IACK cycle
(triggered off of CIP) is sufficient to provide valid data the first time
the analogRD register is read.

3.9 PIVWang E16e

The following program is a straight forward example of starting the
conversion process and checking for the CIP bit an appropriate amount of
time until the process is finished. If an error should occur, the program
will halt execution.

*ee Define Constants

iospace a $ffffO000 0 address of board

00e Program Begins

lea iospace,al 0 load reg. al with short I/O address
clr.1 dO 0 initialize registers
clr.l dl 0 ...
move.w #$00,2(al) 6 start conversion on channel 0
move.1 #$200,dl * set counter

readlop: move.w 2(al),d3 * read AnalogRD
bpl convek * if CIP bit = 0, conversion is done

0 digital value is in lower 12 bits
dbf dlreadlop * decrement and branch 200 times waiting

readerr: stop #$2700 0 conversion not done, abort operation
convok: 9 continue with program

3.9.1 Intemimt Prow= b.mPLe

This next example shows one of the ways to set up and use interrupts.
Please note that the address for 'vect6' is specific to Mizar's VMEB900
debug monitor and may need to be different for other applications.

M&I IC. PAGI 3-5

04

TMEO!F3 OPEO!IOi

4.1 Kn33OJCTION

This chapter provides the user with a brief overview of the operation of
the VME8605 board, giving insight into how the board performs some of its
various functions. It is provided for those who desire a more detailed
explanation of the processes involved and is not required for the
understanding or programming of the board's functions.

It is assumed that the reader has some knowledge of the VMEbus
Specifications and that he has a general knowledge of the interaction
between electrical components. The user should refer to the schematic and
the PAL equations during the following discussion.

4.2 AMMUSSISO and DATA OPMRTIOW

The VME8605 is designed to respond to 16 bit addresses in the VMEbus short
I/0 addressing range. This addressing range is specified by address
modifier codes $2D or $29, one of which is outputted by the CPU depending
on whether it is in the user or supervisor state.

Jumper block K9 specifies the high byte of the board address determined by
the user and has its signals fed into U25, an octal comparator. If a match
is found between K9 and address lines A8 - A15, pin 19 of U25 will go low.
This signal, called /1AM is fed into PAL U26 where it used in conjunction
with the address modifier codes to determine if the 8605 is being selected.
If it is U26 generates /AMATCH which feeds into PAL U21 and is used along
with address line Al - A3 to determine which chip or register is desired.
These address lines come from the VMEbus via U27, an octal bus driver.
Note that U26 also acts as buffer for the read/write line from the VMEbus.

Data lines between the bus and the board are controlled by U28 and U29,
octal bus tranceivers. The direction of data flow is controlled by a
signal called /BUSRD which comes from PAL U22. If BUSED is low, data goes
onto the bus from the board, if BUSED is high the board receives data from
the bus. These chips are activated whenever data goes to/form the bus.

U19 and U23 are octal drivers that buffer the data lines between U1O, the
HS574 chip, and the bus data buffers. These chips are enabled by the
signal /AREAD from PAL U21 which indicates that the HS575 is to
setz.ý/receive some data. U24 is used as a register to hold the interrupt
vector value. U18 is the data buffer for the channel select value enabled

* by /CHSEL from PAL U21.

Each of the above chips are activated by their respective sigals which are
generated from a combination of /AMATCH, several control signals from the
VMibus and a particular combination on address lines Al - A3.

N ILA XC. PA 4-1

APPEDIX

APPENDIX A: H3574 Data Sheets

APPENDIX B: AD524 Data Sheets

APPENDIX C: Parts List

APPENDIX D: PAL Equations

APPENDIX E: Schematic

0

151*3 INC•. WIPDUm A-i

APPMI A

85 574 DATA MIS

0

.0

miiiIlC. U/ivwin A-2.

FEATURES
"* Complete 12-Bit AID Converter with

Reference, Clock and Three-state Outputs

"* Full 8- or 16-Bit Microprocessor Bus Interface
"* ISOnSec Bus Access Time
"* Guaranteed Linearity Over Temperature

"* No Missing Codes Over Temperature

"* Fast Conversion - 2jSec C

"* Precision Reference for Long-Term
Stability and Low Gain T.C. *A^ ''

"* Hermetic 28-Pin Metal or Low Cost Epoxy DIP

"* Low Power. 600omW

DESCRIPTION
The HS 574 is a complete 12-0it successve-aoparoximation converter for selting critica1 performance parameters in-

analog -to-dlgital converter with three-state output putters for ctuding gain, offset. input ranges, and accuracy.

direct interface to 8- or 16-bit microprocessor ouses. The HS 574 is offered in a hermetically sealed package for use
HS 574 is implemented with advanced bipolar and CMOS over a wide temperature range and for MIL.STD-883 re-
LSI chips resulting in maximum performance at lowest cost cluirements. The lower cost proprietary commercial package
The SAR. 12-bit decoded DIA. control logic, switches and is offered for applications not requiring the wider temperature
buffers are faoricated using CMOS processing for lowest exposure.
power A unique comparator, reference anrd required The HS 574 is available in 6 product grades, The HS 574J. K
amplifiers are fabricated using linear bipolar processes and L are specified over a temperature rangre of 00 C to
for maximum speed and reduced offset and drift over -70C while the HS 574S, T and U are specified over the
temperature MIL temperature range -55*C to +- 125 "C. All "-B versions

Incorporating a unique precision comparator design. the of the HS 574 are fully screened to MIL.STD-8838 a'id are
HS 574 offers several advantages over more conventional processed in accordance with Method 5008. 1. All units that
circuits Advantages include lower input impedance variation are not specified as -8" (8838 processing) are rigorously
from device to device, faster conversion, lower initial offset. tested including full power burn in at + 85 °C. Hybrid
and lower parametric drift over temperature A proprietary Systems guarantees Acceptable Quality Level (AOL) of 0.4%
decoded 12-bit 0/A prowvdes increased accuracy lower drift for all commercial models which means that there are no
and reduced output noise over the AID operating range rejects in a sample lot of 100 pieces. That's more than twice
Precision low TCR laser trimmed resistors are used in the as tough as t has to be - even for military applications

FUNCTIONAL DIAGRAM
OUTPUT%

?1 ! T IT o1

I i., -i 8'VS .T ill I--HIS 574 L ,.OGIC ?ýg STY ,-4JTP•,•,UT,,• GI 'g t

iL. i

'IV

Sol Ya"I aA
SUCiACIO

PACKAGIE OUTUNIE CONTROL FUNCIOcNS
Dimenspons shlown ini nches ancl (mm) The HS5 574 contains all control functions necessary to provife for
CAME A 0.705 0.255 MXcomnolete microprocessor interface and also. sfan alone oeraf io

0T7W1 iiy T 4 including continuous conversions. All control functions are Meined in*-MA- Table I ana Table 2.
Funaian 00#mtW~ Functio

Pm? i O CE Choa Enaci. I Tygecaily usia mciock
I-A TY pficynclvntion With O?3.") 2 fLOubeflhgh (1)for a cwwuon

20 t.1 T 3. Mum behgh ~(I)to rem dm an
0.120 hlat0-

4 ..f abor nuy tie usia1

MAX Chrwip ut I TYCW fti ad" Oiin
0.100 u~dvsma~ Ap

TI 2. Mum be low (0) fra owsonomt
11 14 T'P =111 Or 1111111 am 41 t"i 01'AA

ToTom 0.01 0 x0.020 1.0 lnhiYtu satVIEW (0.54) wAI-
CASE1 RlinaCor"" ~ } = %wow

Addoms I .Suigas =%woian moow 12 Oni

9* low (0). f ~ 1

K"tai zaom 1 m- mmAfl tot
*- ptd~~h be I .Ilwd fm owa

Z. NOft 12 IM larwduig (11).

*I *. 7 tow(01.

*.0 * J Taft i. Deuig d co" C Aie l Fgaw

80TOM .0"CONTROL INPUTS ___ HS S74 OPERATION
aew i 10SAW CF.0O~ A IV I A. _

SUPPLJ00 AT MA1100DCTUM OPTION. 0 X x x X No Ossl.
** OCATCS PON I (MfI*L P(AGS~a -I - oO

I______ 1t=n SS(TT 0 0. X 0 WihwsMilt12401 Commwwa
2___ 124_____ 0 L X I hulms 841k Cm L vum3S 51 TAUN-3___ 08 06 0 bulrnm 124St Cmnwmm
5 i 2? 01111iS~ J 0 Pin I x 121111 6 -SiCwm

a S 23 01117O 1 OWWAS.Wau
7 _______ 22 066 0 Pi is- + 111:11sm
9 1114 OUT 2t 0111
* ANA GNOIACI 20 0S4 Pi 45 Tra" g4LSsuW

I I Val to 062 #4072.1 -I wuiemn.1a" mm
12 1wPOFF 17 06, t.0Uuu wieism LOW
13 loV1# Is DIOLStiIDS 4.- .016m uin , apii a umm ., W a imr
14 20V,," is OIWTA46 NO S. 11011111 ll uzX ix x 3=-0 tin

ASSOLUTE MAXMIMU RATW=G

VCC toOIQWcWYWII 0to10 *l5v raw2. HS 5?4 Tnm Taw
VE EtoOgm COT~YIV 010o-16S5v

rL= o OqSgim CoTmmo 010 -?7V
An"so CMmon to 0sgi Cofwy"an :t IV.Conraso Incus iCE. M %. 1211 F/Z) t0
OvgiwCovvm 0 5OV 10VLOI- 0~ .OV

kAnwaogmas IREF w, SIP OFF IOV~f to
Anaeog Connon alGV

20Vip, to Manalo- onioi 24V
REF Out' rdindg"q tlon 0como

11,10,111111 01111101on 5 m
Lowe Vwtompgurum Sasawng 300*C. lOSac

P4UIilimlitsto $lltrogilfe-cntnuuscoversions are poua The~t sis ofth A, kn at the start of a conversion Places the
apliscations for an analog to digital convener. see Fig. 3 tS 574e fima ei D :ther en ful 2-aconversiono nan thei Asor me is ue

1. Prior oo C~onyersioro

so Pic A0. IShortcyceabdcormvwusrn
54M171A 0.0 Full 12 birconversion

2. Atear Conversison (READ)
A0. I Oata-Low Byte (LSS)""___ tolbUPUo11weld by Zeros

tollOwudw by midodle vad low We@
'LS Iin a jAP application the A line can be considereGd a Dair of WR

(I ~locations; as follows-
01 04 1. Prior to Conviersion IWRITE)

I OUTPT lotMODE
ra 7 . 0 in low add~res (A~,,-0) Full 12-bi conversion

R . Gin hingh addres (A0 1) Short cycle 8-bil conversion
T 2. Atear Conversion IREAD)

Wr in eirrier addfress (A,0 X) Full 12-ti word with 12418.
ieil.I in nhgh acdrnisa(A,- .) LSS'silzeriosvien 12/8..0

W. I iin tow adddress (A, a0) a MSB's ormy wen 1219 -O

INTERFACING THE HS 574 WITH "IOT MI11CROPROCESSORS
a__ The HS 574 which has 12-bit data can be used dirsotty with popular

8-bit nmicroprocessors. The data however, must be multiplexed by
MW W setting the output mode selecta 124 pin to GINO.

love---- NV WASE 2In the first Case, a 6800 (or 6502) is used. See Figure 4.

ISTATUSS
I bw-.¶~ *DATA.

11
HGH8"

I II

live5I7Piz
~Li HSO 574 _____________

5~~~~~0 * AA'..07 oe1 eoCn a enee o ag yte.-
Iws ~~~~~ ~I *U more 0.VLO ~ *~-~~i. A

eith.A NerI servce heinterp Or be tiefor a~ (la nc ttssrn
coveerad e-4041 VALI V21cneso oeA sdn AreIn

the truth tati~. Figure 5 shows the 8080V &aP asitraedwt hS 574 In this Mcase.e a. 8228ou cotoleoiwhonwihgtero eert ne
CETh TsU connecte toe ahet toQ andhc 0. theF integratot asshwrhsa
whichWhe will iniiat a c0vro (at -0. end of a) Theesin the neto ill
then~~~ite integrat the initialt 1f ae the outpu 304 thenc firm invrie cains D

doveela ind thabe R/cman A2-er thnefirst ovrion. NoeAcs'on'tinuu'sn
cohetrutoh tarle. caused by dehayis the STATU ;&TS int RI it h S57 nti

Afterse th 82n28io istol copst thew outpu datas tine generat outdod
tE-sat apconn mately to a S aftri 0.S IFitgraoes low sDownE. athsan wigals
srem aninivald (comnrvoscrversiono oen)u vinS safterte arsngewg
Re cntadwhich vn ft all owAonesifon the poICa0.Thve eg ejtwriggered
atae itoegrl toaed initiaO ath etherautputf e frs (75S34 rle causingalent)O(AýDTAHGHO, Us ing the RC ntomr assow. Afe the firm acowvedrs twen. conver- ONW U _ 1 los O VV

sinsShnr imscanse be used buta loner STimeS (il.t caus longEA

Al(the m acnersios copeethe o uatpltce asynchronousl byomeaous of CN11OL11
thisae apTprox~imael (CONTRO OUTer TS tine The (DON)ata will
reai-aynb valid. (fromreav2-itu converso)0n S Using thi e nethd dataA ewi

alwasbecurn and talooheR ie SaTUS th needk snout be thesbtledfr vThi AiGe5 nefcn heM 7 i 00
dataotm o h ac nw s2nadtehl iei n

-,~~ 12M , -

0T 4". POE 4UPL C!YONSIDERATION
NMS ~14 2574 22

INV 15V a cc HS $74 W13 ~ ~~~Decoupling capacitors are rcmeddo l oe upypn
161 located as close to the convener as 0oftble. Suitable decoupling

: 1" NOi capacitors are I OpF tantalum type in parallel with 0. 11AF disc

v@T .iO ' GROUNDING CONSIDERATIONS
itU0 IWO - iNV v The analog comimon at pinl 9 is the ground reference point for the
'4 MtOWN - INV II internal rfrersifice and is thus the high Quality ground for the* TO J@V * &"CO 00cu cocuIs HS 574. Kt should be connected directly to the analog reference

poinlt of the systoflt In order to achieve all of the high accuracy per-
------- J ormance available from the HS 574 in an enwionment of high

2. To infcreseeadm mn s aog digital noise Content. it is recommended that the analog and digital
a) Change R3 to 33kg. anM R2 to 3000. commons be coinnected together at the package. In some situa-
b) Add soens remuor 1002 to t 5V ir~ut and 2000 to lins, the digital common at pin 15 can be connected to the ma

1 0v WMM convenien ground reference point: anailog power return is pro-
F~p.. lb Uno~ar~ ~ferred. It digital common contains high frequency noise beyond

with ~wn d~san~nt200mV. this noise may feed through the converter, so that some
caution will be required.

ZERO ADJUSTMENT PROCEDURE It is also Important in the layout, to care"ul consider the Placement
1. ~ ~ ~ ~ ~ ~ ~ o *o"nplrrngs iia lines. Itis recommended tha digital tines not be run direct.

a) St inut oitae prcisly t . WSS.ly under the 574. For optimumn systemn performance. itspc
b) Adjust zero control until converter is switchng from peI'fII. a ground piane is advised under the 574. This soxxld be

ooooooooooto ooooooooi.connected to a digital ground. Finally, in packaging the assembled
2. Fo bipoar rages:574. me designer shoud also try to nminmize any capacitive

a) Sw iputvolagepreisey t ij5~ bov - S.coupling that mig~ht occur at the top to the device.
b) Ad~o zero cointro until converter is switching from

oooo0o000000 to 000000000001
GAIN ADJUSTMENT PROCEDURE
I .Set input voltg precisely to 1/2LS8 lose than 'all bits on' value.

Noeihtthis is 1 I/jSa less than nominal lull scale.0 2. Adjus gain control until converter is switching from

Table 4 sumiman~zes the zero and gain adjusimrent procedure, and
shows the prope input teog voltages used in calibrating the
HS 574

Iotgenput Ipt where Ionpueter pint
Inupu Aoltage AIuanput ther coveorint

Range merit V " Just an the vorge o
0- -
0 th~~e two codes -hw.

ZEO14m 000000000001

0ZERO -4."m6V 00000
0 000000000001

0 o 2V 11111111111111110
GAIN 4.99S3V111111111111

IZERO -9.9976V 000000000001

I t10v -111I11111111

GAIN 4.9933V 11111111111111

'Codes shown are natural binary for unipofar input ranges and oft-
set binary for bipoar ranges.

Taibie 4. Cafibmtion Data

APPMnH a

AD524 DATA SHUTS

KUMA 33C. flPUWU A-3

C~ ANALOG
3~DEVICES Precision Instrumentation Amplifier

I A0524
ADVANCE TECHNICAL DATA ADS24 FUNCTIONAL BLOCK DIAGRAM

PUATURU _ _

Low PdNe~werty: 0.006% 03 - 11
1410 CMRK: t30dl (G a 10001

Low Offea V~ Oaft: 6.61 &v /

COWN"M -n~ Af~enimm. powser on - P"Wona f
NO 1311mW CDMompeNOW&"euie
livwevenfCos~mpeon d io

PRODUCT DESCRIPTON PRODUCT HIGHLIGHTS
The A0524 is aprwcumiss ruesilitbac 1mmao mlie . The ADS24 has tow guaranteed offse voltage, offset 'capta

a(o high Iinemvr, hagh covin- Made - -tia, , Ww offse puse of 1. 10, 100 and 1000.I , 'cap dnM. and law noses makes; the AD0524 sustbie for us m3oqtan uptofe nulling terminaba mr provided for
nm dt acqisiio so very high precision appiacatiouns and to minimise o~ffst voliaap

Th AS4 a ur of wka nh0(nth __V.C changes in gain rAnging appl00itbam.
tpin offme valtager drift aflame than O.51YPC, CMI above 4 b D2 sflyuptpoetdfrbo oe nw
98dDa unity po aIlMB atG - 1000) and 4.dva Theinn PC 52 Q o f ally spr ructd oeboh owr n
o(0.005%agG - 1. Imeddiumtanothexoutsadk~gcwenficatioun P3 f si oli
the AD324 also ha & ZMHz usia bandwidth prodvict (G a 5. The AD524 offers sajpewr druamic perfortmance with a gain
100). To msake it smutb for high speed data uanumstlo IVwa bandwidth product af 25MHa. full peak response af 75kHz
the AD124 has anouuput skw emf 31V-'sas ad'ettbin15"s unstaseUnfifguft oflI SIM o0.0I% of a I OV stp kG
up teo aPot 2i 00. 100).

As a copessiamplififer the ADS24 doe m urn quie my Crimina
rnswimas fat limed pin of, 10, 200 and I OS. Ftothr
_a umitgs bet~ I and 1000 anly a mairle rinsor a required.

The AD524 api a fogly Vrsce 'for bodi pmwe as sad
powe of air i f andiions

The AM24 IC munsvtado.s amolifer is available infoaw

The swsosiama '-I pudb, the low drif "K- grade said low
drdt. bomhisheasr a y 'L grad.re w peall frm0Oto*W7C.
Tb. "S" grab ganamas perfirn w mPt specaflanssi ame the
f"l MIL-simpertture top:~ - 53*C to 12IWC sad is sagd"k

neeads MJL-ST"43. Class 8.

IMITR&JMENTA 77ON AISOLA 77ON AMPLIFIERS VOL' 1. 5- f9

GAN --

.lva* a - "M -i w

reu,. 1. Pin Ccnftufguutn Agure I offuur Nusl Citcuar

- It

II7ZZ
I'wlo - lwim

a*Ida
II

AWa

o-* 1mnY

Iw Storito vs. G&W, PVuPw a. PSRM V& Fvsumnc

0 ItETRUMNTTOM "N I ISO"ATION AWPUFIERS VOL.1, 5.21

SPECIFICATIONS mo,.v o-kaa o ,a+a o ""o"
No" AD"" SIM

C.1 RON fti

G.10 0 61 05

anIU :So% %

0I:= :061% *

GG::0. Iu

0:G.I I

%YWAN IC3U,0M
sG l -1)1,11

G-lU 1.1k

soaNo. Sm .*A

ftI Up zoW.&v Ca..1 v-
e.0. mb0*4...

- Tdoonme. oiiii5%-_ M I ov o
CO.P.fl* 1510

0.10 II..
0.1. ~ ?w

no NUM Im 2

0-M -oill AI

G.. INS ZI1 us~

la 7-m a J~6

DOWW

a..r-nao sm S
0.11. mo& D 1

In 1.

M-TOM

TOL.I, 5-jOIWTIMNATO*IOIAMNAPFI

APIDUX C

COMPONETS PARTS LIS1T

nuhn INC. AFpIZl A-4

PARTS LIST for VN8605

ITEM REFERENCE
NUMBER DESIGNATORS DESCRIPTION

1 U1,2,3,4 IC HS5O8A
2 U5 IC LM555
3 U6 IC AD524
4 U7 IC HS2425
5 U8 IC 74LSOO
6 U9 IC 74LS04
7 010 IC HS57T4
8 Ull IC 74LS164
9 U12,13, 1 4 IC 74LS74
10 U15 IC 74S38
11 U16 IC 74LS158
12 U17 IC 74LS139
13 U18 IC 74LS174
14 U19,23,27 IC 74LS244
15 U20 IC 74LZ85

16 U21 PAL 12L6
17 U22 PAL 16L8
18 U24 IC 74LS374
19 U25 IC 25LB2521
20 U26 PAL 14L4

S21 U28,29 IC 74LS645-1
22 U30 ANALOG DEVICES 949

23 Ri 12K OHM RESISTOR
24 R2,4 10K OHM RESISTOR
25 R8,11,12 100 OHM RESISTOR
26 R9 lOOK OHM RESISTOR
27 R13 4.7K OHM RESISTOR
28 R7,10 100K OHM POTENTIOMETER
29 R5,6 10K OHM POTENTIOMETER
30 R11,12 100 OHM POTENTIOMETER
31 CI,2,26,27 15w! 16V TANTALUM CAPACITOR
32 C3-5,7-11,15-25 .1m CERAMIC DISC CAPACITOR
33 C6,12 1000 PF CAPACITOR
34 C13,14 IMF CAPACITOR

35 PI 96 PIN MALE DIN CONNECTOR
36 J1 26 PIN MALE CONNECTOR
37 U21,22,26 SOCKET 20 PIN .3" DIP SOCKET
38 U3,4 SOCKET 16 PIN SOCKET
39 U10 SOCKET 28 PIN SOCKET
40 K1,8 3X2 HEADER
41 K2 4X2 PIN HEADER
42 K4,6 3X1 HEADER
43 K9 8X2 HEADER
44 K1o 2X7 HEADER

S45 K5 111 HEADER
46 K7 2X1 HEADER
47 K3 5 PIN HEADER

UizAU INC. APP90mU A-5

APPOMI D

?aL ZAT108S

KUMA 33NC. APPWDU A-6

. 12L6
860521BCC
REGISTER SELECT LOGIC
MIZAR INC., ST. PAUL, MN.
IIACK DTACK BAS AREADIN RESET BA3 BA2 DS1 BAl GND
RW AMATCH COXV INTLEN INTEN INTDIS AREAD CHSEL BDSO VCC

CONV z /AMATCH*/BAS'RESET*BDSO 6/DS1*/BA3'/BA2'/BA1 DTACK'/RWU/IIACK
CHSEL x /AMATCHe /BASeRESETeBDSO0"/DS 1 '/BA3*/BA21BA I1DTACK /RWV /IIACK
AREAD z /AMATCHO/BAS*RESET*/BA3'/BA2*BA1*RW*/IIACK

÷/AREADIN*BDSO*/DS 1
INTLEN: /AM&TCH*/BAS*RESETeBDSO*/DS I/BA3*BA2@/BA I 'DTACKO/RW'/IIACK
INTEN : /AMATCH /BAS'RESETBDSO /DS 1 /BA3'BA2eBA I1DTACKI/RWU /IIACK
INTDIS: /AMATCH*/BAS'RESET'BDSO*/DS 1*BA3•/BA2•*/BA IDTACK'/RW'/IIACK

+/RESET

DESCRIPTION: GENERATES LATCH ENABLES FOR CONVERT START, CHANNEL SELECT,
INTERRUPT ID, AND INTERRUPT ENABLE/DISABLE.
LOCATED AT U20.

BOARD REVISION C CHANGES: REVISE LAYOUT, MOVE BOARD TO CAD SYSTEM

BOARD REVISION: C DATE: 7/10/85
PAL REVISION: A DATE: 7/10/85

I IIACK INVERTED INTERRUPT ACK. FROM VME BUS - IACK SIGNAL
2 DTACK DATA ACKNOWLEDGE FROM U13 - PIN 9
3 BA5 BOARD ADDRESS STROBE FROM VNE BUS -- AS SIGNAL
4 AREADIN ADDRESS READ IN FROM PAL U20 - PIN 17
5 RESET RESET FROM V4E BUS - RESET SIGNAL
6 BA3 BOARD ADDRESS 3 FROM VHE BUS - ADDRESS SIGNAL
7 BA2 BOARD ADDRESS 2 FROM VME BUS - ADDRESS SIGNAL
8 DS1 DATA STROBE 1 FROM THE BUS - DS1 SIGNAL
9 BA1 BOARD ADDRESS 1 FROM TME BUS - ADDRESS SIGNAL
10 GND GROUND
11 RW READ/WRITE FROM VMS BUS VIA PAL U26-17
12 AHATCH ADDRESS MATCH FROM PAL U26 - PIN 16
19 BDSO BOARD DATA STROBE 0 FROM VTE BUS - DSO SIGNAL
20 VCC VOLTAGE INPUT

13 CONV CONVERSION TO U8 - PIN 13 INDICATES
START OF A/D CONVERSION

14 INITLEN INTERRUPT LATCH ENABLE TO U24 - PIN 11 ENABLES
INTERRUPT VECTOR ONTO BUS

15 INTEN INTERRUPT ENABLE TO U12 - PIN 1
16 INTDIS INTERRUPT DISABLE TO U12 - PIN 4 DISABLES INTRPT
17 AREAD ADDRESS READ TO PAL U21-PIN4 & U19/U23-1&19

ENABLES DATA BUFFERS
"18 CHSEL CHANNEL SELECT TO U8 - PIN 12 & U18 - PIN 9

CHOOSES CONVERSION CHANNEL

XIAR INC. APPMDI A-7

. PAL1IL4
860526BCC
ADDRESS MODIFIER AND RU DECODER
MIZAR INC., ST. PAUL, N.h
lIACK HAM NC NC AM4 £13 £142 AMO £141 GND

LWORD WRITE £145 NC NC AMATCH RW NC NC VCC

RW = /WRITEOLWORD#/IACK'AM5O/AM4'•13*/AMl1AMOl/HAM
AMATCH a LWORDe/I•IACK*AM50lAkM4AH3l/AM1 AMOl/HAM

DESCRIPTION: ADDRESS MODIFIER DECODER AND R/W DECODER.
LOCATED U26.

BOARD REVISION C: REVISE LAYOUT, MOVE BOARD TO CAD SYSTEM

BOARD REVISION: C DATE: 7/10/85
PAL REVISION: A DATE: 7/10/85

------------- -------------------

I IIACK INVERTED INT. ACKNOWLED. FROM VME BUS VIA U9 - PIN 8
2 HAM HIGH ADDRESS MATCH FROM U25 - PIN 19

INDICATES VALID A8-A15 ADDRESS
3 NC NOT CONNECTED
4 NC NOT CONNECTED

O 5 AM4 ADDRESS MODIFIER 4 FROM VNE BUS
6 AM3 ADDRESS MODIFIER 3 FROM VME BUS
7 AM2 ADDRESS MODIFIER 2 FROM VME BUS
8 A£O ADDRESS MODIFIER 0 FROM VNE BUS
9 £14 ADDRESS MODIFIER 1 FROM VME BUS
10 GND GROUND
11 LWORD LONGWORD FROM VMS BUS-INDICATES 32 BIT XFERS
12 WRITE WRITE FROM VMS BUS - READ/WRITE LINE
13 A45 ADDRESS MODIFIER 5 FROM VME BUS
14 NC NOT CONNECTED
15 NC NOT CONNECTED
18 NC NOT CONNECTED
19 NC NOT CONNECTED
20 VCC VOLTAGE INPUT

16 AMATCH ADDRESS MATCH TO PAL U21 - PIN 12 INDICATES
VALID ADDRESSING FOR THIS BOARD

17 RW READ/WRITE TO PALS U21 & U22 PIN 11
DELAYS READ/WRITE LINE FROM BUS

NE INC. APmXI A-9

MXZhB INC. AFPinU A-10

A .
lb 1 ..

C Z

*~ ~~~~F -7-a~- ~ :~

j 0

C. M9.1-1

.se C

;1;14 -. -

0xo~

T IT

r.

'CC

K0 "

0. z zI 3,3 , oz Pa0R 'a 0c

fEll

%*~j

s..s

.-. '. .. 0 . t000
- ~, 1

WHO"

0

Appendix J - Battery Package Data

0

0

List of Batteries

SUPPLIER:

Allied Electronics

MANUFACTURER:

Panasonic

PART 0. NOMINAL 10 HR. (Ah) CAPACITY 20 HR. (Ah) Y

LCR12V24P 22 24 12
LCL12V38P 34 38 12
LCR12V3PF 2.8 3.0 12
LCR12V6.5P 6 6.5 12

Wire Color List

. WIE LOR PIN NUMBER BATTERY

blue/blue 1 +12V circuit
black 2 -24V ground
red/red 3 +12V FIP
black 4 ground AOl
orange/orange 5 -1 2V circuit
white/purple/black 6 +24V gyro
blue 7 +12V AOl
black 8 ground circuit
N/C 9
black 10 ground circuit
black 11 ground circuit
blue/blue 12 +12V circuit
N/C 13
black 14 ground FIP
orange 15 -12V circuit
black/black 16 ground circuit

Appendix K - List of Parts

0

O

Parts List for All FIP Boards

The Following list is accurate as of 10/9/89.

Display Board:

Connectors:

_# Part Used For
1 Molex-3 CON5 (Pitch & Roll)
2 Molex-4 CON 3, CON 4 (Magnometer Connectors)
1 Molex-6 POW (Power Connector)
2 Berg-2 TP1, TP2 (Test points for Display Circuits)
2 Berg-3 CON1, CON2 (Display Pots)
I Berg-50 CON1O (Bus)
2 Berg-20 Alt., AS (Display Connectors)
4 Berg-8 CON6, CON7, CON8, CON9 (Display Jumpers)

Resistor Values:

R1 = 100K R2 =36K R3 = 100K R4 = 100K
R5 = 100K R6 = 12.5K R7 = 100K R8 = 100K
R9 = 2K R10=2K Rll =2K R12= 10K

S R13 = 10 K R14= 10 K R15 = 10K R16= 2K
R17=2K R18=2K R19= 10K R20 = 10K
R21 = 10 K R22= 10 K

Totals:
Resistor Value
12 10 K
6 100 K
1 36 K
1 12.5 K
2 2K

Capacitor Values:

Cl = 0.44 IiF C2 = 0.44 gF C3 =0.13 gF C4.. 0.13 IiF

Totals:
Capacitor Value
2 0.44 p.F
2 0.13j±F
8 0.1 gF (Bypass. Not listed above)

ICS:

S IC1 = MC34082 IC2 = MC34082 IC3 = MC34082

IC4 = MC34082 IC5 = REF-01 IC6 = REF-01. IC7 = REF-01 IC8 = REF-01

Totals:
_# Part
4 MC34082
4 Ref-O1

IC Sockets:

Part Used For...
8 DIP 8 MC34084 & Ref-01

FEIP Mgt Board:

Connectors and Sockets:

SPart Used For
2 MOLEX 3 RP, PWR (Roll/Pitch, Power Connectors)
1 Berg 6 3-Axis (3 Axis)
1 Berg 8 ALT/AS (Altitude/Airspeed)
1 Berg 26 CON26
1 Berg 50 CON50

. Resistor Values:

R1 = 10K R2= 10K R3 = 28.5K R4 = 12.5K
R5 = 8.2K R6 = 17.5K R7 = 19.2K R8 = 77.8K
R9 = 10K R10 = 10K Rll = 10K R12 = 10K
R13= 10K R14= 10K R15 = 28.5K R16 = 12.5K
R17 = 8.2K R18 = 17.5K R19 = 19.2K R20 = 77.8K
R21 = 10K R22 = 10K R23 = 10K R24 = 10K
R25 = 100K R26 = 10K R27 = 330K R28 = 28.5K
R29 = 12.5K R30 = 8.2K R31 = 17.5K R32 = 19.2K
R33 = 77.8K R34 = 10K R35 = 10K R36 = 10K
R37 = 10K R38 = 100K R39 = 330K R40 = 28.5K
R41 = 12.5K R42 = 8.2K R43 = 17.5K R44 = 19.2K
R45 = 77.8K R46 = 10K R47 = 10K R48 = 10K
R49 = 10K R50 = 100K R51 = 10K R52 = 330K
R53 = 28.5K R54 = 12.5K R55 = 8.2K R56 = 17.5K
R57 = 19.2K R58 = 77.8K R59 = 10K R60 = 10K
R61 = 10K R62 = 10K R63 = 1 M R64 = 1 M
R65 1 M R66 = 1 M R67 = 28.5K R68 = 12.5K
R69 - 8.2K R70 = 77.8K R71 = 19.2K R72 = 17.5K
R73 =1K R74 = 90K R75 = 1K R76 = 90K
R77= 1 M R78 = 1 M R79 = 1 M R80 = 1 M
R81 = 28.5K R82 = 12.5K R83 = 8.2K R84 = 17.5K
PR85 = 19.2K R86 = 77.8K R87 = 1K R88 = 200K

R89 = 1K R90 = 200K R91 = 10K

Totals:

_# Resistor Value
3 1K
27 10 K
7 28.5 K
7 12.5 K
7 8.2 K
7 17.5 K
7 19.2 K
7 77.8 K
3 100'K
3 330 K
8 1M

Capacitor Values:

C1 = 0.1 lF C2 = 0.1 liF C3 = 400 nF C4 = 400 nF
C5 = 400 nF C6 = 480 pF C7 = 8000 pF C8 = 80 nF
C9 = 0.1 PF C10 = 0.1 gF CII = 0.1 pF C12 = 0.1 pF
C13 = 0.1 pF C14 = 0.1 gF C15 = 0.1 pF C16 = 0.1 •F"
C17 = 400 nF C18 = 400 nF C19 = 400 nF C20 = 480 pF
C21 = 8000 pF C22 = 80 nF C23 = 0.1 .F C24 = 0.1 F
C25 = 0.1 VF C26 = 0.1 gF C27 = 0.1 pF C28 = 0. 1 gF
C29 = 0.1 IiF C30 = 0.1 pF C31 = 400 nF C32 = 400 nF
C33 = 400 nF C34 = 480 pF C35 = 8000 pF C36 = 80 nF
C37 = 0.1 FW C38 = 0. IFi C39 = 0.1 gF C40 = 0. p.F
C41 = 0.1 pF C42 = 0.1 pF C43 = 0.1 gF C44 = 0.1 ;iF
C45 = 400 nF C46 = 400 nF C47 = 400 nF C48 = 480 pF
C49 = 8000 pF C50 = 80 nF C51 = 0.1 gF C52 = 0.1 •F
C53 = 0.1 pF C54 = 0.1 F C55 = 0.1 ;iF C56 = 0.1 gF
C57 = 0.1 pF C58 = 0.1 WF C59 = 400 nF C60 = 400 nF
C61 = 400 nF C62 = 480 pF C63 = 8000 pF C64 = 80 nF
C65 = 0.1 IF C66 = 0.1 gF C67 = 0.1 pF C68 = 0.1 pF
C69 = 0.1 gF C70 = 0.1 gF C71 = 0.1 gF C72 = 400 nF
C73 = 400 nF C74 = 400 nF C75 = 480 pF C76 = 8000 pF
C77 = 80 nF C78 = 0.1 gF C79 = 0.1 tF C80 = 0.l1 .F
C81 = 0.1 pF C82 = 0.1 gF C83 = 0.1 LF C84 = 0.1 gF
C85 = 0.1 F C86 = 400 nF C87 = 400 nF C88 = 400 nF
C89 = 480 pF C90 = 8000 pF C91 = 80 nF C92 = 0.1 FF
C93 = 0.1 pF C94 = 0.1 gF C95 = 0.1 gF C96 = 0.1 F
C97=0.1I pF C98=0.1 gF

Totals:
#6 Capacitor Value
56 0.1 gF
21 400 nF
7 480 pF

7 8000 pF
7 80 nF

POTS:

Pot1 = 10K Pot2 = 50 K Pot3 = 50 K Pot4 = 10K
Pot5 = 50 K Pot6 = 50 K Pot7 = 50 K Pot8 = 50 K
Pot9 = 50 K Pot10 = 50 K Pot11 = 50 K Pot12 = 50 K
Potl3 =50 K Pot14 = 50 K Pot15 = 50 K Pot16 = 50 K

Totals:
Part
2 10K
14 50 K

ICS:

IC1 = OP-77 IC2 = MC34084 IC3 = OP-77
IC4 = OP-77 IC5 = OP-77 IC6 = MC34084
IC7 = OP-77 IC8 = OP-77 IC9 = OP-77
ICI0 = MC34084 ICII = OP-77 IC12 = OP-77
IC13 = OP-77 IC14 = MC34084 IC15= OP-77
IC16 = OP-77 IC17 = OP-77 IC18 = M034084
IC19 = OP-77 IC20 = OP-77 IC21 = OP-77
I C22 = MC34084 IC23 = OP-77 IC24 = OP-77
IC25 = OP-77 IC26 = MC34084 IC27 = OP-77
IC28 = OP-77

Totals:
Part
21 OP-77
7 MC34084

IC Sockets:

_# Socket Used For
21 DIP 8 OP-77
7 DIP 14 MC34084

Notes:

Power Distribution Board:

Part Used For
1 MOLEX 3 PWR (For FIP Big Board)
2 MOLEX 6 IN, POW (Battery Pack, Display Board)

2 REF 01 Transducer +10V Supply
3 MOLEX 2 +10V Connector and +24V Gyro Power

Batte= Pack Board:

Component
VICOR 5V DC to DC converter

1 MOLEX 6 (FIP Power)
1 MOLEX 4 (AOI +12V & -12VPower)
1 MOLEX 2 (AOI +5V Power)
1 UNknown Battery Pack Connector

Appendix L - VME Specialists SBC-2 68010 Board Manual

0

0

SBC2/D(A)

Technical Manual

SBC2

Single Board Computer

for the VMEbus

Revision A

First Edition

Copyright 1986 by VMEspecialists

1

This material contains information of proprietary interest to
VMEspecialists. It has been supplied in confidence and the recipient, by
accepting this material, agrees that the subject matter will not be copied
or reproduced, in whole or in part, nor its contents revealed in any manner
or to any person except to meet the purpose for which it was delivered.

VMEspecialists has made every effort to ensure that this manual is
accurate and complete. Still, the company reserves the right to make
improvements or changes in the product described in this document at any
time and without notice. Furthermore, VMEspecialists assumes no liability
arising out of the application or use of the device described herein.

The electronic equipment described herein generates, uses, and can
radiate radio frequency energy. Operation of this equipment in a
residential area is likely to cause radio interference, in which case the
user, at his own expense, will be required to take whatever measures may be
required to correct the interference.

This product has been designed to operate in a VMEbus electrical
environment. Insertion into any card slot which is not VMEbus compatible
is likely to cause serious damage. Please exercise particular care with
the 3U sized version of this product, which can be easily damaged if
inserted into an I/O slot, rather than into a standard VMEbus PI slot.

VME SPECIALISTS, INC.
558 Brewster Avenue #1

Redwood City, California 94063 USA

415-364-3328

r2

2

Table of Contents

@ 1. General Product Description 5

2. Model Numbers ... 5

3. Inspection, Warranty, and Repair 7

4. Specifications .. 8

5. Installation and Jumper Options 10

5.1 EPROM type options 10
5.2 System controller options 10
5.3 Interrupt handler options 11
5.4 VMEbus requester options 12
5.5 Installation in a VME system 12

6. Address Modifier Codes 14

7. VMEbus Interface Signals 15

8. Serial Connectors Pinout 16

9. Component Parts List ... 17

10. Schematics and Programmable Logic Equations 19

3

Table of Figures

Figure I The SBC2 VMEbus Data Processor 6

2. Jumper Locations 13

4

* 1. General Product Description

The VMEspecialists SBC2 (figure 1) is a general purpose data
processing module fully compatible with the VMEbus and intended to fill
application areas such as dedicated machine control and multiprocessor
environments which require high functionality density at low cost. The
single board computer has the following features:

"* 68000/68010 MPU, 10-Mhz clock rate
"* Available in 3U (single height) and 6U (double height) form factors
"* 512Kbytes dual port zero-wait-state RAM
"* Up to 128Kbytes local zero-wait-state EPROM
"* Two serial ports with independently programmable baud rates
"* 16-bit counter/timer
"* Complete on-board VMEbus system controller, may be disabled
"* 7 level interrupt handler; Vectored and autovectored modes
"* Compliance with VMEbus specification revision "C"
"* Front panel RUN and EXTERNAL lamps
"* Front panel RESET and ABORT switches

The processor module is constructed on a seven layer printed circuit
board. The module employs the zig-zag in-line packaging style of 256Kx1
RAM, devices, a pin grid array packaged 68000/68010, and extensive surface
mount packaging.

Each module undergoes extensive functional testing to assure high
product reliability. A one-year limited-warranty applies.

This series of VMEbus processing modules Is exceptionally well suited
to applications which require cost effective data processing for the
VMEbus, particularly where space and packaging constraints exist. The dual
ported memory, accessable by the local processor and by any other VMEbus
master, minimizes board count and maximizes memory access rate for syste!s
employing 1/0 with direct memory access capability.

2. Model Numbers

SBC2 Single board computer, equipped with 10 Mhz 68000,
512Kbytes dual port DRAM, sockets for up to 128Kbytes EPROK.
Configured for EPROM starting at location 000000,
local RAM starting at 080000 (processor address space),

RAM starts at 080000 (VMEbus address space).
3U (single height) front panel. With user's manual.

Add one or more of the following suffixes to specify other configurations:

-010 Provide 10 Mhz 68010 in place of 68000
-AD Address EPROM at fcOOOO-fdffff.

DRAM begins at 000000 (processor address space) and at
000000 (VMEbus address space)

On power-up, the SSP and PC are fetched from EPROM.
-6U Provide 6U (double height) front panel

5

4b~

Figure 1. The SBC2 VMEbus Data Processor

OC

3. Inspection, Warranty, and Repair

Upon receipt, carefully inspect the VMEbus module and shipping
container for evidence of damage in shipping. Notify the factory
immediately if shipping related damage is suspected.

Limited Warranty

VMEspecialists warrants this product to be free from defects in
workmanship and materials under normal use and service and in its original,
unmodified condition, for a period of one year from the time of purchase.
If the product is found to be defective within the terms of this warranty,
VMEspecialists' sole responsibility shall be to repair, or at
VMEspecialists' option to replace, the defective product, provided the
product is returned transportation prepaid and insured to VMEspecialists.
All replaced products become the sole property of VMEspecialists.

VMEspecialists' warranty of and liability for defective products is
limited to that set forth above. VMEspecialists disclaims and excludes all
other product warranties or product liability, expressed or implied,
including, but not limited to, any implied warranties of merchantability or
fitness for a particular purpose or use, liability for negligence in
manufacture or shipment of product, liability for injury to persons or
property, or for any incidental or consequential damages.

O Service Policy

Before returning a product for repair, verify as well as possible that
the suspected unit is at fault. Then call the factory for a Return
Material Authorization (RMA) number. Carefully package the unit, in the
original shipping carton if this is available, and ship prepaid and insured
with the RMA number written on the outside of the package. Include a
return address and the telephone number of a technical contact. For out-
of-warranty repairs, a purchase order for repair charges must accompany the
return. VMEspecialists will not be responsible for damage due to improper
packaging of returned items.

Out of Warranty Repairs

Out of warranty repairs will be billed on a material and labor basis.
The current minimum repair charge is $100. Customer approval will be
obtained before repairing any item if the repair charges will exceed one
third of the quantity one list price for that unit. Return transportation
and insurance will be billed as part of the repair and is in addition to
the minimum charge.

VMEspecialists also :nakes available repair on an immediate exchange
basis. In most cases, a replacement can be shipped on the day of request.
This service is billed at a flat rate, currently 30% of the quantity one
price.

7

4. Specifications

Processor 10 Mhz 68000 (68010 opt)

EPROM (Capacity/Supplied) 128Kbytes/0

EPROM types 2764, 27128, 27256, 27512

RAM (Capacity/Supplied) 512Kbytes/512Kbytes

RAM type Dynamic dual ported for access by both
the local processor and by the VMEbus.

RAM address configuration RAM can be partitioned in 64Kbyte
increments (processor address space)

RAM can be configured to begin on any
512Kbyte boundary (VMEbus space)

Address mappings are defined in
programmable logic

Wait states (EPROM/RAM) 0/0

Serial ports Two, RS232-C, using 68681 device

Counter Timer One 16-bit, using 68681 device

Baud rates Independently Programmable: 50 to 38.4 Kbaud

VMEbus requester Any one of R(k), k=O..3 (STAT), RWD

VMEbus Compatibility Rev. C

Master data transfer options A24:D16

VMEbus system controller:
Arbiter Single level (may be disabled)
SYSRESET* driver Power up or front panle button

(may be disabled)
SYSCLOCK driver (may be disabled)
TOUT drives BERR* after min 12.6, max 18.9 usec.

(may be disabled)
Interrupt handler Seven total levels (including locdl)

Local sources (Abort button, 68681 SIO/CT)
Physical configuration SINGLE (opt. avail. with double high panel)

Front panel switches ABORT, RESET

Front panel lamps RUN, EXTERNAL

Address space (Standard) 000000 -- Olffff EPROM (128Kbytes)
080000 -- Offfff RAM (512Kbytes)
100000 -- dfffff VMEbus
feOOOO feffff local 68681 SIO/CT
ffO000 -- ffffff VMEbus short I/O

8

(Alternate) 000000 07ffff RAM (512Kbytes)
080000 bfffff VMEbus
fcOOOO fdffff EPROM (128 Kbytes)
feOOOO feffff local 68681 SIO/CT
ffOOOO ffffff VMEbus short 1/0

Power requirements +5 VDC, 2.6 Amps typ., 3.6 Amps max.
+12 VDC, .035 Amps max.
-12 VDC, .035 Amps max.

Operating temperature 0 to +55 degrees C

Storage temperature -40 to +80 degrees C

Relative humidity 0 to 90% non-condensing

SIZE: SBC2: 129 mm. high, 20 mm. wide, 172 mm. deep
SBC2-6U: 262 mm. high, 20 mm. wide, 172 mm. deep

(viewed from front panel)

WEIGHT: 0.23 Kg, 0.5 pounds.

9

5. Installation and Jumper Options

Prior to installation, the module options must be configured by way of
jumpers. Options include:

"* Specification of the EPROM type
"* Enable/Disable control over individual system controller

functions
"* Assignment of interrupt handler levels
"* Specification of VMEbus requester priority level

5.1 EPROM type options

Jumper group A is located below EPROM 2C. There are six posts
positioned as indicated below:

I 2C I IC I
I I I

0 0 0 0 0 0 0
6 5 4 3 2 1 0

Jumper Group A

EPROM TYPE CONNECT and CONNECT

2764 2 -- 3 5 -- 6
27128 2 -- 3 5 -- 6
27256 1 -- 2 5 -- 6
27512 1 -- 2 4 -- 5

We recommend use of 200 ns. access time or faster EPROMS.

The socket at location IC holds the device driving DO-D7 (OD0
ADDRESS). Device 2C drives D8-D15 (EVEN ADDRESS).

5.2 System controller options

The system controller functions may be individually enabled/disabled
through jumper block JPRC, having four post pairs. Jumper block C is
located just below 3B.

10 02
30 04
50 06
70 08

CONNECT 1--2: To enable this module to drive SYSRESET* on power-up
and when the RESET button on the front panel is
pressed.

CONNECT 3--4: To enable this module to drive SYSCLK, the VMEbus
16 Mhz system clock. Be sure that only one module
in your system is driving SYSCLK.

CONNECT 5--6: To enable the bus timeout watchdog timer on this

10

module. If no VMEbus slave responds to a transfer
request initiated by ANY VMEbus master within a time
interval of 12.8 to 19.2 microseconds, the watchdog
timer will abort the data transfer cycle with BERR*.

CONNECT 7--8: To enable the VMEbus arbitor of this module. Only
one module in your system can be the system arbitor.
If you select this module to perform the arbitor
functions, then this module MUST be in slot ;.

5.3 Interrupt handler opticis

The microprocessor unit recognizes seven distinct interrupt levels,
with multiple interrupters permitted on any one level. Jumper block B
defines which of the 11 interrupt sources will be active, and the mapping
of interrupt sources to MPU interrupt level.

Find jumper block B between 3B and 4B near the board center. Factory
default jumper locations are indicated by dashed lines.

MPU level 7 2 0 0 1 ABORT button
0 3 VMEbus level 7

MPU level 6 5 0 0 4 VMEbus level 6
MPU level 5 7 0 0 6 VMEbus level 5

SMPU level 4 9 0---- 0 8 VMEbus level 4
MPU level 3 11 0 ---- 0 10 68681 interrupt
MPU level 2 13 0 0 12 VMEbus level 2
MPU level 1 15 0 0 14 VMEbus level 1

0 16 VMEbus level 3
VMEbus BCLR* 18 0 0 17 VMEbus ACFAIL*

EL:h interrupt level has been defined in the PAL located at position

5B as being either vectored or autovectored.

Default Interrupt Mapping

MPU Level Vectored/Autovectored

(highest) 7 Autovector
6 Vector
5 Vector

PRIORITY 4 Vector
3 Vector
2 Vector

(lowest) I Vector

11

5.4 VMEbus requester options

Jumper group D defines the priority of the VMEbus requester. It is
located just above and to the right of P1.

15 13 11 9 7 5 3 1
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
14 12 10 8 6 4 2

There are four bus request levels, 0 through 3. Level 3 has highest
priority. If you enable the local bus arbitor, or if you are using any
SINGLE level arbitor, then you must use bus request level 3.

To use bus request level 3: CONNECT 1--2, 3--4, 5--6, 7--9,
(Factory preset) 8--10, 11-12

0 0 0 0--0 0 0 0
I I I I

0 0 0--O 0 0 0

To use bus request level 2: CONNECT 1--2, 3--4, 5--9, 1--6,
S7--8, 12--14

To use bus request level 1: CONNECT 1--2, 3--9, 4--0, 5--6,
7--8, 12--13

To use bus request level 0: CONNECT 1--9, 2--10, 3--4, 5--6,
7--8, 12--15

5.5 Installation in a VMEsystem

This module provides continuity of bus grant and interrupt acknowledge
daisy chains. Be sure to check the following prior to installation:

[1] Ensure that the backplane bus grant daisy chain jumpers have been
removed for this slot.

[2) Ensure that empty slots between slot I and this slot have bus
grant and interrupt acknowledge diasy chain jumpers inserted.

[3] Be sure to install this module in slot I if the board's bus
arbitor has been enabled.

[4] Is this slot VMEbus compatible, with VME voltage levels? Nominal
S voltages are: +5 VDC, P1-A32, P1-B32, P1-C32

+12 VDC, P1-C31
-12 VDC, P1-A31
GND, P1-All, P1-A15, P1-A17, Pl-A19, P1-B20, P1-C9

12

fu.O -mi

tI I e 0

" . m~U -l .]• - -
/. t -] ~

II • • ,• I , m--, . -l , ,
. ,-

Figure 2. Jumper Positions

13

O 6. Address Modifier Codes

During VMEbus data transfer cycles, the module asserts the following
address modifier codes:

TRANSFER TYPE ADDRESS MODIFIER CODE (HEX)

Standard supervisory program access: 3E

Standard supervisory data access: 3D

Standard non-privileged program access: 3A

Standard non-privileged data access: 39

For references within the short I/O space (FFO000 through FFFFFF),
the module asserts:

SShort supervisory access: 2D

Short non-privileged access: 29

14

* 7. VMEbus Interface Signals

PI Connector Assignments:

ROW A ROW B ROW C
PIN SIGNAL SIGNAL SIGNAL

NUMBER MNEMONIC MNEMONIC MNEMONIC

1 DO0 BBSY* DO8
2 DO1 BCLR* D09
3 D02 ACFAIL* DIO
4 D03 BGOIN* Dll
5 D04 BGOOUT* D12
6 D05 BG1IN* D13
7 D06 BGIOUT* D14
8 D07 BG21N* D15
9 GND BG2OUT* GND

10 SYSCLK BG31N* SYSFAIL*
11 GND BG3OUT* BERR*
12 DSI* BRO* SYSRESET*
13 DSO* BRI* LWORD*
14 WRITE* BR2* AM5

S15 GND BR3* A23
16 DTACK* AMO A22
17 GND AMI A21
18 AS* AM2 A20
19 GND AM3 A19
20 IACK* GND A18
21 IACKIN* SERCLK A17
22 IACKOUT* SERDAT A16
23 AM4 GND A15
24 A07 IRQ7* A14
25 A06 IRQ6* A13
26 A05 IR05* A12
27 A04 IRQ4* All
28 A03 IRQ3* AlO
29 A02 IRQ2* A09
30 A01 IRQ1* A08
31 -12V +5 STDBY +12V
32 +5V +5V +5V

Notes:

IACKIN* is connected to IACKOUT* on board
The following lines are not used:

SYSFAIL*, SERCLK, SERDAT, +5 STDBY, IRQ7*..I*

15

@ 8. Serial Connectors JA and JB

Jb Pinout (68681 Channel A)

Pin Number Name Direction

1 GND

3 RXDA IN

5 TXDA OUT

7 CTSA IN

9 RTSA OUT

13 GND

Ja Pinout

Pin Number Name Direction

1 GND

3 RXDB IN

5 TXDB OUT

7 CTSB IN

9 RTSB OUT

13 GND

16

. 9. Parts List

PART NUMBER DESCRIPTION LOCATION

1001002125 Data delay line, 125ns 4C
1001002225 Data Delay DeviceDDU-222-50 5C
1001100001 LED(green), SPG-5731 REC STANLEY LEDI
1001100002 LED(red),SPR-5731 REC STANLEY LED2
1001100368 3.68 Mhz Oscillator, TTL Crystal XTL1
1001101116 16Mhz Oscillator, TTL Crystal 6B
1001101120 20 Mhz Oscillator, TTL Crystal 9C
1001205812 Switch cap, (5081-3, red) SW2
1001205813 Switch cap (5081-2, black) SWI
1001210110 Computer switch, (EPII-D1-A-B-E) SW1,SW2
1002000020 SMS 20 Pin Inline strip socket 13C
1002001124 Socket, 24 pin IC machine screw 2B
1002003926 Molex connector, 39-26-7148 J1,J2
1002004100 Socket, 20 pin IC machine screw 3B,4B,5B,1OC,91C,91G
1002006810 Socket,64 pin, T&B Ansley pin grid array 1B
1002012014 Socket, 14 pin sip 1C,2C
1003062260 Capacitor, tantalum, 22ufd C1
1003064760 Capacitor, tantalum, 47ufd C2
1003071000 Capacitor, ceramic, lOpfd, .100 rad lOv C5
1003071010 Capacitor, ceramic, lOOpfd, disk C3,C4
1003073340 Capacitor, ceramic, .lufd, chip C23-C45
1004100103 Resistor, 10 kohm chip RIO
1004100202 Resistor, 2 kohm chip R12
1004100221 Resistor, 220 ohm chip R14
1004100471 Resistor, 470 ohm chip R8,R11,R5
1004100472 Resistor, 4.7 kohm chip R6,R7
1004112470 Resistor, 47 ohm chip R1-R4,R9,R92
1004704729 Resistor network, Allen Bradley, 710A472 RP1-RP3
1004724704 Resistor network, Allen Bradley, 708B470 RP4,RP5
1005014001 Diode, 1N4001 D1
1006002505 Amp Connector, # 532505-1 P1
1006100025 Header, dualpin x 25 JPRA-D
1007000005 PCB SBC2 0035A
1007040373 IC 74F373 91F
1007140244 74F244, IC chip 5A,6A,8A,9A
1007140245 74F245, IC chip 1A,2A,91A,91B
1007140257 74F257, IC chip 11C,12C,91D,91E,91F
1007140367 74F367, IC chip 4A
1007420153 IC, 82S153 91C
1008000014 74F14, IC 6C
1008000074 74F74, IC 3C
1008100760 74AS760, IC 3A

17

.PART NUMBER DESCRIPTION LOCATION

1008200590 74LS590, IC 8C
1008751488 1488, IC D7D
1008751489 1489, IC 18D
1009001681 Tib Pal 16L8-15CN 3B,4B,5B,IOC,91G
1009002010 Pal 20L1OA 2B
1009704256 M4256L-12 Zip Ram(120ns) ID-16D
1009908000 MC 68000R10 18
1009908681 MC 68681 P 13C
1011003002 3u Front Panel, punched for SBC2
1011008000 Mounting brackets for front panels
1011008001 Screw,nut pair, 2.5xlOmm
1012000002 Shipping boxes, M-402

18

PARTNO 02(4-306
NAME INTRFT;

DATE 06/05/86
REV 42 ;

KS16NEF LENMAN;
C0M•1I1 VflEspecialists ;
ASSERLbY CPU! ;
LOCATION 4 1

I/ This device performs too aadepunladet functions: 41
/f J] Adr fjli for Dm As
i/ 21 Praoity encoder as in 74LS141 4/
ieoeea**eoe*HOoooe4ooI*I*eteoo*O*OO**O***~eO44IiI*O**oeotO*B**Be/

1o Allovable Target Devict Typos: PFALDLO-160

!*Inputs 61/

P:N I a Al, I Is 68000 address lik A17 I/
FIN 2 z Al8 It A£8 f/
FIN s x ADSEL ; I ADP Nul Select 0/

PIN 4 a '1*97 ; If N10est Priority It Ni o /

PIN 5 a JftRj ; l* *1

PIN 6 a .IR9 ; io
PIN 7 a 1IRG4 ; I /
Pin I I *IRQ• ; //

PIN 9 a ssg: ; 199:
PIN i1 • 'IR M ; is Lomest Priority 0I

Pik 16 • 'AS ; 61000 AS/ o/
PIN 17 a 'RES ; i* YNbus SYSRESET

/## Outputs *#4

Phk 12 x 'IPLO ; J o 6iA Interrupt inputs
PIN 13 a !lPl ; 1* 1/
Pik 14 a IPL2 ; 1x 0/
PIN 1 a RESET ; It RESET to board 0/
PIk i9 a 'START ; is START after reset fetcb SSP 4 PC #/
PIk 19 x 1RA It SAA address I

t** Declarations and Interoediate Variable Definitions 00/

/o# Logic Equations #o/

146 x 417 1 £DSEL
All 6 'ADSEL;

1PL2 a 10R0 IR016I IRGS 1904

IPLI * 1497'~l• IRA'

g IR03 1 !iR04 & IIR64
IR&? 11 '1•4 6 1R10;

IPLO * I307
4 IRgs I 1ING6
* 1393 & '11R94 % '1396
@ Ia91 & '2392 6 '1394 t '1196

RESET • RES

START 8 RES
I START I 'AS

I START I '1IW

PARTNC 0204-00'.
"MiN TICTL.

UESI1NER LEHMANN
COMF.Nf VNElpocialists
ASSEMBLY SDCZ
LOZMTION 916 ;

*U

*oAllovable Target Dtvict Types: PAL31.S-15

5*Inputs to/

FIN 1 z OSO 1#I 6800 LOLS#

P!N 'OSI /# Is 0 OOUDS0 S

FIN z R~AS /# Nhuory RAS/
FiN 4 x ICASI /# I ebory CASh S

PI z IEF;E~m if M0Pemory REFRESMI
FIN i VDPSv /0I VNEbias OSO. S

F:h 7 z VREDS I ; /0 VNEbus 051' INUMDUFERED) VI

F~s e ICASO /# New@rf CASO/ SI

;:4 9 'V"E /0I VNE m5ter has aftory bus #/

F: 1 IFV 0 This board is VNibus master Vl

~N 17 z '.MEs~; it VNEbus KIdTE& Vi

F~h 'D;'§ Over of 8*ee bus asserts DS C
F:N4 1: 2 CSC 1; Newlory bus DS01 0

:h 14 2 NDSI /f Memory bus DSI/ C

Fill I'S z 'VEDA7 /# Enable VNbus transceivers '

F;% 16 'EITOAT !#I Enable 68000-me but vcvrs
Flit 18 2 IVNEDIR /#I Dir of VflEbias data scors
F:k 'Q z 'S ;43 1# UNEbus O515 IDUFFERED, #,

CCLogic Equations ##I

a VNEDS1

DS a ISO # SI

Rcsý z VNE & 1450Q

KO, VAE & VMEOSI

I VNE 4 031:

VN~t~ RAS I 'REFRESH t VNE
Vv~

VAEDA7 D(
* 'NEDAT IVMED'21

sNEDI~ a DRV 4 'VNEkR

I IDAV I VMEWA

C-C

Z; - IWO#
It Re w Cc I

!~ j
8-V

4 43m

0W ___1 __

]I,-
'g II

I DR"
I EliDAT & DSO
I EITDAT & DSI;

PARTNO 0204-0074 ;

NAME ANDECODE
DATE W30/86

REV 01 ;
DESIGNER LEHMANN
CONPANY VNEspecialists
ASSEMBLY S:2;
LOCATION 91 ;

/#,•,•,#,*II,, I*IiH•eOt*4I4I**C*I**C•Hti**I*CII*IC***C*CI*I***#/

/1 II

/* Allowat'e Target Device Types: 82S15A 41

/,* Inputs "/

PIN I A/3 t VMEbus 4:3 A/

PIN 2 = A" I/ VMEbus A22 '/

FIN z A21 ; / VMEbus A21 C/

PIN 4 A2l? ; /# VMEbus A2N '/

PIN 5 z Alq /# VNEbus A19 C/

PIN 6 - AMS /0 VHEbus AMS 4

FIN 7 z AM4 /0 VNEbus AM4 *l

PIN AM3 =/W VMEbus AN4 :/

FIN 9 z AM2 ; / VNEbus AM2 4/

FIN 1 = AMI #/ VMEbus ANM 4/

PIN 12 m AM. 1 VVNEus AMO

PIN 13 m'DSl ; /o VMEbus DSI* 4

FIN 14 INV` ; /* VMEbus DSOe 1/

PIN 15 'BE;E ; /f VmEbus BERR* */
PIN 1 6 ' k ; /# VmEbus IACk* I/

PIN 17 DTA:K ; /# VNEbus DTAC'I oi

FIN Is AS ; /# VmEbus AS# 4,

/44 Outputs 44/

PIN 19 IVRQ ; /# VMEbus requests dualport ram 41

/#& Intermediate Logic *'/

SEL 'Q23 &A21 & '2 1& A2' & A19 & 'BERA & 'DTACk

SI'ACK & AS

If# Logic Equations ee/

VF; x A •MS& AM4 I W & IAMI &ANO & SEL & D30
I AMS& & A4 i AK & ANI 4 AE & SEL & DSI
I & AM 4 &AN " A MI & 'ANO & SEL ID SO
AMS AM4 I & AAMI& 1'AM0 tSEL&• DSI
VK & AS;

PARTNO 0204-0074

NAME OSROS12
DATE 06/30/86
REY 01;

DESIGNER LEHMANN
COMPAN) VNEspeculuists ;

ASSEMBLY SBC2 ;
LOCATION 2B

/* This device acts as as S6L level VNEbus arbiter and as a at

if BUS REQUESTER. It times the address to AS# setup interval. tI

it Allowable Target Device Types: PAL2OLIOA ./

/## Inputs a#/

FIN 1 2 !DBSY ; it VNEbus IBSYI t/

PIN 2 !DS ; If Local 68000 LOS/ '1
FPN 3 I DSI ; UDS/ '1

PIN 4 z 'ARBLTCH ; /I Output of Request Arbitr Ltch Cl

PIN V z : EXT ; IA On board request for VNEbus */
FIN 6 z ERA ; /4 VMEbus DERRa #i
PIN 7 z VNEDSO ; /* VMEbus DSOt Ol
FIN 8 !VNEDSI ; I# VNEbus DSI* f/
PIN 9 = HEAS ; IC YVEbus AS# 01

FIN 10 .VMEDT ; / WMEbus DTACkI I?

PIN 11 : 6IN ; Ba Gus 6rant IN for OUR level o;
PIN 13 = BRIIN ; B Gus Request IN for our level 0/

P4N 211 'DLYOUT /4 Delay line output a/

if# Outputs a.

FIN 14 z 'BROUT ; / B Bus Request Output #;

PIN 15 = !ARBOUT ; Bs Bus grant output from arbitor t/
PIN 16 z IBGOUT ; Ba Gus grant out from requester I/

PIN 17 a 'EDLAS ; /A Enable Address strobe drive VI

FIN 1 : 'DERRL ; /A Local DERRI #/

FIN 19 a'DTACKL ; /* Local DTACk/ */

PIN 20 z IDLYIN ; /# Delay line input V/

FIN 22 z 'DRY ; I# Address drive enable or, VNEbusC/
PIN 2: z !EBLTO ; If Enable Bus Time Out #/

lIf Logic Equations o,/

EBLTO * VNEDSO & "VNEDT
I VMEDSI & IVKEDT ;

DA= DLYOUT & ARILTCH I YVEAS 8 IGIN 1 86GOUT I !VYEDT & !DER& EXIT
I DRY & 16IN
I DRY & EXT

BERRL DR.' t BEP;

DTAZ'L.OE FV t VMEDT ;

DTACKL 'b'V ;

EBLAS 9 DRY & 'DLYOUT 4 DSO
I DRY & 'DLYOUT I OSI
a i~ .!O

BRDUT DLYOUT I 8GIN &'AROLTCH
I 16OUT & BrIN

BORLT EXT & 'EBLAS &DSO
I EXT & IEDLAS & DSI

ARK;'JT DRUMN & 'IBSY

DOIN KI N IDRV

PARTNO 0204-0073
NAME OPRAM
DATE 08130S6b
REV 01 ;
DES16NER LEHMANN
CO.ANY VNEspecialists
ASSEMBLY SIC2
LOCATION 1OC

/ S*0HItH**SOtIStHS*SHSISSSSISSSSSeHSIHOttiH*UIUIH**H*SS/

/a This device control the local DRAM. There are 512Kbytes of s/
/0 Zero wait state memory (I hank of 256Kx1l6). Asynchronous Vl
it arbitration is between the refresh timer and the 69000. #/
/* Arbitration and address decoding are overlapped. Refresh uses VI
/4 the CAS before RAS cycle and autoeatic REFRESH addrss generation S/
/oaataataiSeaaitaloSlaSlattlSS*5545t5555505555545ie4545*Si515ii05it/

I' Allowable Target Device Types: PALI6LB-15 'I

/tO Inputs Wi/

PIN 1 z IASL ; , 68000's AS/ latched in arbit SI
PIN 2 z !MDSO ; M emory bus DSO/ S/

PIN 3 !MDS! ; I Memory bus DSlI */
PIN 4 a IRAM ; I/ RAM address presented 68000 V1
PIN 5 = !DEL40 ; I' RAS/ delayed 40 ns. a/
PIN 6 z !DELIOO ; I' RAS/ delayed 100 ns. o/
PIN 7 ' !ARBTO ; /0 ARB delayed for metastables V/
PIN S z !'YERG ; 1/ VME request of ram, latched VI
PIN 9 = RFSHTO ; /l Refresh timeout 0/
PIN II a IVNEDEL ; IS VME delayed

/*0 Outputs #*/

PIN 12 : WVME ; /S Set NUX to VMEbus access VI
PIN 0•1 'VMEDT ; I D DTACK# VNEbus sI
PIN 14 z 'REFRESH ; l* Refresh cycle SI
PIN 15 a IMDTACK ; /0 Memory DTACK/, 68000 access 0/
PIN 16 z ICASI ; /I CAS for DO..7 0/

PIN 17 : !CASO ; I/ CAS for D8..15 S/
PIN 19 a !RAS ; /# RAS/
PIN 19 a 'AR9 ; I/ ARBITRATE CLOCK 0/

/*# Logic Equations ##l

ARS a !RAS & RAN & 'NDTACK & 'REFRESH & VMEDT
I VNERG & !RAS % !'OTACK ! 'REFRESH I !VMEDT
I RFSHTO & !'AS 6 !MDTACK I !REFRESH & VWNEDT

REFRESH z ARTO & !RAS & !DEL40 & 'CASO & 'CASI & RFSHTO & IDELiOO
I REFRESH I IDELIO0
I REFRESH I DEL40 ;

MDTACk z RAS & !REFRESH I MOSl & 'VNEDEL
RAS & 'REFRESH & MDSO & 'VMEDEL
I MOTACK & RAN & NDSO
I MDTACK & RAM & MDSI

VMIrT z RAS & 'REFRESH & VMEDEL I CASI & DEL100
RAS & 'REFRESH & VMEDEL & CASO & DELI0
I VMEDT I MDSO
VMEDT I MOSI ;

______________CASI x P49 & IP£TRFqW I, nUl d I. WO1

I CASI & ASL & 'REFRESH & RAM & MHOO & MDTACD & 'VMEDEL
I CASI & NDSO & VNEDEL & 'REFRESH

CAS3 RAS & 'REFRESH & DEL40 I MDSI
I REFRESH & !DELIOO & 'ARDTO
I CASO & ASL & 'REFRESH IRAN & MDSI & MDTACK & IVMEDEL
I CASO & NDSI & VMEDEL &'REFRESH

RAC. 3 REFRESH & !RFSHTO & CASO
I REFRESH &I RFSHTO & CASI
IARITO & 'RFSHTO & 'VMERG t 'VMEDEL & ASL& RAN I DEL40

& !DELIO00 I'CASO & I.CASI
I AU~TO & 'RFSHTO & YNERD & VMEDEL I IDEL40 I DEL100

'CASO & 'CASI

I RAS & !DELIOO t 'REFRESH
I RAS & RAM & 'REFRESH &I VNEDEL
RAS & VHERG t !REFRESH IVNEDEL

VMEAROTO I RFSHTO & VNERG t 'RAS & 'CASO I'CASI t 'REFRESH
VMEDEL &VNERO
I VMEDEL ICAS(O
IVNEDEL &CASI;

PAFTNO 0204-0073 ;
MNE ADRS82;
DATE 09/01186
REV 01 ;
DESIGNER LEHMANk;
COFMANY VNEspeciilsts
ASSEMRLY SBC2 ;
LOCATION 3N

/ O**CCCI**CHC*CCCCi**5C11114*ICHOCCC**CCCIC ~ee*CC**CCHCCCCI*/
/f This device does address decoding as follows: */

/, ADDRESS: DESTINATION:
000000 - Olffff RON (128 Kbytes) *1

/ 0 090000 - Offiff RAM (512 Kbtyes) 'I
/* 100000 - dffff VNEbus 4/
CO40000 - feffff Local 68681 SIC and courteritimer 5/

/* ffO000 - ffffff VNEbus short I/O

;* Allowable Target Device Types: PALI6LB-15 o/
ie*useus****es****ees**sese*s*ea**seee***esseeoeee**e*****e*******ui

/ I4 inputs #f/

FIN C1..1891 zA .. I6] ; I 68000 adr 23..16 *l
PIN 9 : IDS If 68000 DS/ 5/
PIN 11 ' !START ti Inital SSP and PC fetches 0/
PIN 13 ' 'AS if ASi 1/
PIN 17 z IIACK I/ FCO..2 is interrupt ack ti
FIN 19 'EIT1A£' /i interrupt ack for VMEbus C/

/## Outputs s*;

FIN 12 'RON ; Is Local RON access #/
PIN 14 IRANM ; / Local RAN access 4/
PIN 15 z 'S]O ; /1 68691 access 4/

FIN 16 z 'EXTERNAL ; /# VBEbus access #/

PIN 19 ' !SHORT ; I/ VMEbus I/O access 'I

/,& Declarations and Intermediate Variable Definitions 44l

FIELD ADR m [A2:..161

1#I Logic Equations ee/

SHORT 2 A23 tA22 t A21 I A20 & A19 & AI8 A17 &AI6 ;

SIC 1 423 &A22 &A21 &A20 & A19 I A18 & A17 $!Alb IAS S DS & IAC9;

ROM z !A23 I IA22 & !A21 t IA20 I IA19 & !A'1 t 'A17 & AS I DS t 'lACK

RAM -- ,A23 & IA22 I !A21 & 'A20 AIAS I 'lACK ;

EXTERNAL 'A23 & 'A22 I IA21 & A20 & AS I 'lACk
0 '4234 'A22 t 421 I AS I 'lACk
I 'A." A 422 & AS t 'lACK
I AQ: $ A22 & AS t 'IACk
I Aý: t A22 & 'A21 & AS I 'lACK
I EXTIACK & AS
* A23 & AN 4A21 & A20&19& A18 i A17 1 416 AS & 'IACK

PARTNO 0204-0095,
NAME FCNDECOD
DATE 02/10186
REV 01 ;
DKSIGNER LEHMAN
COMPANY VNEspeIxalists
ASSEMBLY CPUI
LOCATION 59;

i/ This device decodes the FC2..O lines of the 68(00 to
it chk for interrupt ack cycles, internal or external. It chooss es
it vectored or autovectored lACK cycle, and also includes a BUS TIMOUT ctr tl/ nxxeatx**eH***e**exeuoooxn**o*xotuxe*,,,,xtox,,,e,,,,,ooo*,,,,,,,,,,,,1
it Allowable Target Device Types: PAL16L8-lB 1l

lox Inputs eel

PIN [l..31 2 [AI..3] ; /1 69000 Address Al to A3 0/
PIN 14-61 z IFCO..2] ; /f 68000 Function FCO..2 #/
PIN 7 'AS I/i 68000 ASi ;1
PIN 8 z SLOCLK ; l RE6ULAR CLK 156 Khz 'l

PIN 9 a 'EILTO ; l Enable Bus Tibee ut

/## Outputs ##1

PIN 12 LIACK ; /0 Local interrupt ACKI 0/
FiN 13 z IlACk ; it Any interrupt ACK/ #/
PIN 14 STATE! /* OTC state machine statel a/
PIN 15 = STATEO ; I. ITO state eachine sta(eO #l
PIN 17 'BTO ; l Bus Time-out xl
PIN 18 : 1VPA ; l0 69000 VPA/ 0/
PIN 19 : 1EXTIACk ; it External interrupt ACK/ o/

lto Declarations and Intermediate Variable Definitions ofl

FIELD FCN: (FC2..O]
FIELD APR: [A4..!]

Iof Logic Equations oil

ITO a EDTO I STATEI & STATEO ;

IA:V a FCN:7 ;

LIACt. a FCN:7 & AS & !A3 I A2 & Al;

EXTIACK = FCN:7 & A3 & !A2
O FCN:7 & A3 I A2 I 'At
I FCN:7 & '3 W& A2 & 'Al
FCN:7 & *'A A !Q & Al

VPA z FCN:7 & AS I AZ I A2 i A;

STATEI : EILTO I 'STATEI t STATEO I 'SLOCLt

I EBLTO & STATE! ;

STATEO D EILTO I 'STATE! & 'STATEu I SLOCLk
I EBLTO & 'STATEI & STATEO
I EILTO & STATEI $ STATEO I !SLOCLt

NAME INTRPT;
DATE 061051/6
REV 02 ;
DESIGNEF LEHNANN
COMPANY VNEspectalists
ASSEMBY CPUl ;
LOCATION 41

/C This device perfores too independent functions: C/

;* Adr NUX for DRAMAN Al
1. 21 Prioity "ncoder as in 74LS148 C1

/i Allowable Target Device Types: PALI6LS-1 51

'Co Inputs o0/

PIN I Al ; /* 68000 addres line Al7 0/

FIN 2 z A18 ; IC AIS #/
pFI 3 z ADSEL ; /0 ADR RUX Select #/

PIN 4 z !IR97 ; /0 Highest Priority Int Rg Vl

PIN 5 : !1R96 ; /C C/

PIN 6 : !IRQS ; /4 C/
FIN 7 x 1IRG4 ; /I I/

PIN a s 'IR3 ; /C Co/

PIN 9 z!1R ; /1 C:

FIN 11 a 1IRGI ; IC Lowest Priority V/

FIN 16 a 'AS ; C 68000 AS/ C/

PIN 17 a !RES ; IC VEbus SYSRESET Cl

O/# Outputs WI

PIN 1 : 'IPLO ; IC 68000 Interrupt inputs S/

PIN 13 a 'IPLI ;
FIN 14 z IIPL2 ; IC C/

FIN 15 z 'RESET ; /C RESET to board Cl
PIN 19 a 'START ; I/ START after reset fetch SSP & PC 0/
PIN 19 z !RAS ; Do OAM address I o/

/e. Declarations and Interudiate Variable Definitions eel

/o, Logic Equations CC,

A46 z Al? t ADSEL

I AIS I 'ADSEL ;

IPL2 a IR67 I R1R6 I IROS I 1R04 ;

IPLI 2 IR27
I IRU

I IRR93 I IR4 & !IR95
* IR?2 & !l194 i 'IRr.

IPLO 9 IR2?
I IRQ5 & rQg
IRQ3 & 'IRQ4 I '1R06

IR2) !IR92 & 'IR94 I 'IR96

RESET 2 RES

START " RES

I START & !AS

I START & 'A10

C

0w -

0c

too W
.40

TUT0 I

bl

A, -

~ .%

- - , , , • -

_- , . . _,•, I

**1 ., ,, .*9• " q .'' ' ' '' , •

"- ' I 3t 4=. -- 'A

99.. ... , . -i.£ -,. --,,
- I-,,.,. _ .'..": ,~,. ;•

| ,

.I -4. . . -! . -1 -. -.

* ,.. I

, . , I

-I

Ira

p -

i. +

"9 " , a, , I,

C I m I

% o C

~x. ~44A

r-

*% %

elll

aan

00

coca,

ca

lam

to4

a -we

c

0o 0 Z.C

inL

.j J

OF,

a01

All Ff

00

I *.

0%

led

Iu I I_

0:

0>

Sz w C,

0 0U c

c V;
wu

Lmiii

AC

-ALC

0 3

oil

J

FIP Dump Table Description 11/5/89

Column Description
0 Air Speed
1 Angle of Attack - always 0
2 Vertical velocity - 0 to 4096 with 2048=0 velocity
3 Heading Deviation
4 Roll Angle
5 Pitch Angle
6 Altitude Deviation

Column Channel Description
7 0 Raw Altitude Set
8 1 Raw Heading Set
9 2 0
10 3 0
11 4 Raw Altitude
1 2 5 Raw Air Speed
1 3 6 Raw Pitch

O 14 7 Raw Roll
15 8 Raw Z
16 9 Raw Y
17 10 Raw X

APPENDIX C

11MEbus BAC(PLANE CONNECTORS AND VME BOARD CONNECTORS

INTRODUCTION

This appendix identifies the VMEbus backplane JI/PI connector pin assignments.
The following table lists the pin assignments by pin number order. (The
connector consists of three rows of pins labeled rows A, B, and C.)

Ji/Pi Pin Assignments

ROW A ROW B ROW C
PIN SIGNAL SIGNAL SIGNAL

NUMBER MNEMONIC MNEMONIC MNEMONIC

1 D00 BBSY* D08
2 D01 BCLR* D09
3 D02 ACFAIL* D10
4 D03 BGOIN* D11
5 D04 BGOOUT* D12
6 D05 BGlIN* D13
7 D06 BGIOUT* D14
8 D07 BG21N* D15
9 GND- BG20UT* GND -

* 10 SYSCLK BG31N* SYSFAIL*
11 GND - BG3OUT* BERR*
12 DSl* BRO* SYSRESET*
13 DS0* BRl* LWORD*
14 WRITE* BR2* AM5
15 GND - BR3* A23
16 DTACK* AM0 A22
17 GND- AM1 A21
18 AS* AM2 A20
19 GND- AM3 A19
20 IACK* GND - A18
21 IAC(IN* SERCLK (1) A17
22 IACKOUT* SERDAT (1) A16
23 AM4 GND - AI5
24 A07 IRQ7* A14
25 A06 IRQ6* A13
26 A05 IRQ5* A12
27 A04 IRQ4* All
28 A03 IRQ3* AI0
29 A02 IRQ2* A09
30 A01 IRQl* A08
31 -12V +5V S7TDBY +12V
32 +5V +5V +5V

NOTE:

(1) SERCLU arn SERDAT represent prov sion for a
sp.ecial serial commulication bws p-t'>r ti`
beirn tinaizW.

C ,'- 2 , • m

APPENDIX B

VMEbus CONNECTOR/PIN DESCRIPTION

INTRODUCTION

This appendix describes the VMEbus pin connections. The following table
identifies the VM~bus signals by signal mnenonic, connector and pin nunber, and
signal characteristic.

VMWIus Signal Identification

CONNECTOR
SIGNAL AND

MNEMONIC PIN NUMBER SIGNAL NAME AND DESCRIPTION

ACFAIL* 1B: 3 AC FAILURE - Open-collector driven signal which
indicates that the AC input to the power supply is
no longer being provided or that the required
input voltage levels are not being met.

IACKIN* IA: 21 INTERRUPT ACKNOWLEDGE IN - Totem-pole driven
signal. IACKIN* and IACKOUT* signals form a
daisy-chained acknowledge. The IACKIN* signal
indicates to the VME board that an acknowledge
cycle is in progress.

0 IACKOUT* IA: 22 INTERRUPT ACKNOWLEDGE OUT - Totem-pole dr iven
signal. IACKIN* and IACKOUT* signals form a
daisy-chained acknowledge. The IACKOUT* signal
indicates to the next board that an acknowledge
cycle is in progress.

AM0-AM5 IA: 23 ADDRESS MODIFIER (bits 0-5) - Three-state driven
1B: 16,17, lines that provide additional information about

18,19 the address bus, such as size, cycle type, and/or
IC: 14 DTB master identification.

AS* IA: 18 ADDRESS STROBE - Three-state driven signal that
indicates a valid address is on the address bus.

A01-A23 IA: 24-30 ADDRESS bus (bits 1-23) - Three-state driven
IC: 15-30 address lines that specify a memory address.

A24-A31 2B: 4-11 ADDRESS bus (bits 24-31) - Three-state driven bus
expansion address lines.

BBSY* 1B: 1 BUS BUSY - Open-collector driven signal generated
by the current DTB master to indicate that it is
using the bus.

BCLR* 1B: 2 BUS CLEAR - Totem-pole driven signal generated hy
the bus arbitrator to request release by the
current DTB master in the event htia a hic•ner
level is requesting the ,us.

B-i

VMEbus Signal Identification (cont'd)

BCONNECTOR
SIGNAL AND

MNEMONIC PIN NUMBER SIGNAL NAME AND DESCRIPTION

BERR* 1C: 11 BUS ERROR - Open-collector driven signal generated

by a slave. This signal indicates that an
unrecoverable error has occurred and the bus cycle
must be aborted.

BGOIN*- IB: 4,6, BUS GRANT (0-3) IN - Totem-pole driven signals
BG3IN* 8,10 generated by the Arbiter or Requesters. Bus grant

in and out signals form a daisy-chained bus grant.
The bus grant in signal indicates to this board
that it may become the next bus master.

BG0OUT*- IB: 5,7, BUS GRANT (0-3) OUT - Totem-pole driven signals
BG3OUT* 9,11 generated by Requesters. Bus grant in and out

signals form a daisy-chained bus grant. The bus
grant out signal indicates to the next board that
it may become the next bus master.

BRO*-BR3* lB: 12-15 BUS REQUEST (0-3) - Open-collector driven signals
generated by Requesters. These signals indicate
that a DTB master in the daisy-chain requires
access to the bus.

0 DSO* 1A: 13 DATA STROBE 0 - Three-state driven signal that
indicates during byte and word transfers that a (
data transfer will occur on data bus lines
(DOO-D07).

DSI* IA: 12 DATA STROBE 1 - Three-state driven signal that r

indicates during byte and word transfers that a
data transfer will occur on data bus lines
(D08-D15).

DTACK* IA: 16 DATA TRANSFER ACK1NOWLEDGE - Open-collector driven
signal generated by a DTB slave. The falling edge
of this signal indicates that valid data is
available on the data bus during a read cycle, or
that data has been accepted from the data busduring a write cycle.

D00-D15 IA: 1-8 DATA BUS (bits 0-15) - Three-state driven bidirec-
lC: 1-8 tional data lines that provide a data path between

the DTB master and slave.

DI6-D31 2B: 14-21 DATA BUS (bits 16-31) - Three-state driven bi-
2B: 23-30 directional lines for data bus expansion.

GND IA: 9,11, 3RCUND
15,17,19
IB: 20,23
iC: 9
2•3: 2,12,

VMEbus Signal Identification (cont'd)

CONNECTOR
SIGNAL ANDY MNEMONIC PIN NUMBER SIGNAL NAME AND DESCRIPTION

IACK* lA: 20 INTERRUPT ACKNOWLEDGE - Open-collector or
Three-state driven signal from any MASTER
processing an interrupt request. Routed via
backplane to Slot 1, where it is looped back to
become Slot 1 IACKIN* to start the interrupt
acknowledge daisy-chain.

IRQI*-IRQ7* IB: 24-30 INTERRUPT REQUEST (1-7) - Open-collector driven
signals, generated by an interrupter, which carry
prioritized interrupt requests. Level seven is
the highest priority.

LWORD* IC: 13 LONGWORD - Three-state driven signal to indicate
that the current transfer is a 32-bit transfer.

[RESERVED] 2B: 3 RESERVED - Signal line reserved for future VMEbus
enhancements. This line must not be used.

SERCLK 1B: 21 A reserved signal which will be used as the clock
for a serial communication bus protocol which is
still being finalized.

go SERDAT 1B: 22 A reserved signal which will be used as the
transmission line for serial communication bus
messages.

SYSCLK IA: 10 SYSTEM CLOCK - A constant 16-MHz clock signal
that is independent of processor speed or timing.
This signal is used for general system timing
use.

SYSFAIL* 1C: 10 SYSTEM FAIL - Open-collector driven signal that
indicates that a failure has occurred in thu
system. This signal may be generated by any
module on the VMEbus.

SYSRESET* IC: 12 SYSTEM RESET - Open-collector driven signal
which, when low, will cause the system to be
"reset.

WRITE* IA: 14 WRITE - Three-state driven signal that specifies
the data transfer cycle in progress to be either
read or write. A high level indicates a read
operation; a low level indicates a write
operation.

B-3

VMEbus Signal Identification (cont'd)

CONNECTOR

SIGNAL AND
MNEMONIC PIN NUMBER SIGNAL NAME AND DESCRIPTION

+5V STDBY 1B: 31 +5 Vdc STANDBY - This line supplies +5 Vdc to
devices requiring battery backup.

+5V IA: 32 +5 Vdc Power - Used by system logic circuits.
1B: 32
IC: 32
2B: 1,13,32

+12V IC: 31 +12 Vdc Power - Used by system logic circuits.

-12V IA: 31 -12 Vdc Power - Used by system logic circuits.

0-

B--4

S

Appendix M - VME Specialists VME-750 Board Manual

0

0

VME750/D(A)

Technical Manual

VME750

Multi-Function Accessory Module

for the SBC2 VMEbus Computer Module

Revision A

* First Edition
Copyright 1986 by VMEspecialists

1

This material contains information of proprietary interest to
VMEspecialists. It has been supplied in confidence and the recipient, by
accepting this material, agrees that the subject matter will not be copied
or reproduced, in whole or in part, nor its contents revealed in any manner
or to any person except to meet the purpose for which it was delivered.

VMEspecialists has made every effort to ensure that this manual is
accurate and complete. Still, the company reserves the right to make
improvements or changes in the product described in this document at any
time and without notice. Furthermore, VMEspecialists assumes no liability
arising out of the application or use of the device described herein.

The electronic equipment described herein generates, uses, and can
radiate radio frequency energy. Operation of this equipment in a
residential area is likely to cause radio interference, in which case the
user, at his own expense, will be required to take whatever measures may be
required to correct the interference.

This product has been designed to operate in a VMEbus %lectrical
environment. Insertion into any card slot which is not VMEbus compatible
is likely to cause serious damage. Please exercise particular care with
the 3U sized version of this product, which can be easily damaged if
inserted into an I/O slot, rather than into a standard VMEbus P1 slot.

2

* Table of Contents

I. General Product Description 5

2. Inspection, Warranty, and Repair 7

3. Specifications 8

4. Installation and Jumper Options 9

4.1 Memory Management Options (JPRI..3) 9
4.2 Static Memory Type Select (JPR4..6) ... 0................ 9
4.3 Parallel Sense Jumper Block (JP7..1O) 10
4.4 Installation in a VME system 12

5. Theory of Operation ... 12

5.1 Real Time Clock 125.2 MW68681 DUART so............. 13
5.3 MC68881 Co-Processor 13
5.4 MC68451 Memory Management Unit 13
5.5 Static Memory Sockets U12, U13 13

6. Serial Connector Pinout 14

7. Parts List ... 15

8. Schematics and Programmed Logic Source Code 16

3

* Table of Figures

Figure 1 The VME750 Multifunction Accessory Module 6

2. Jumper Locations 11

0

4

0 1. General Product Description

The VMEspecialists VME750 (figure 1) is a multi-function plug-in
accessory module for use with the SBC2 VMEbus computer, having the
following features:

"* Adds two additional async serial ports with baud rate
generators

"* Adds an additional 16-bit counter/timer
"* Adds a real-time clock with lithium battery power source
"* Adds two static memory sockets, which can hold EPROM'S or

RAM's. These sockets are also powered by the continuous
lithium power source and can be used for up to 64Kbytes
of non-volatile RAM, or up to 128Kbytes of EPROM. With
the EPROM sockets on the SBC2, a total of 256Kbytes of
EPROM can be accommodated. When used with RAM, a front-
panel mounted write-protect switch provides a mechanism
for insuring data integrity during system operation.

"* Provides a socket for an MC68881 floating point coprocessor.
"* Provides a socket for an MC68451 memory management unit.
"* Provides a four bit parallel input port through which the

SBC2 can sense a jumper group for configuration information.

The VME750 mounts rigidly to the SBC2; together they share a double
wide front panel. The two board set occupies two positions in the VMEbus.

VME750-C: Without memory management, Without co-processor
VME750-F: With floating point co-processor, without MMU
VME750-M: With memory management unit, without coprocessor
VME750-E: With memory management, with coprocessor

Add -6U suffix to denote 6U (Double High) front panel for secure
mounting in 6U chassis.

5

.01

Figure 1. The VME750 Multifunction Accessory

6

2. Inspection, Warranty, and Repair

m
Upon receipt, carefully inspect the VME750 module and shipping

container for evidence of damage in shipping. Notify the factory immediately if
shipping related damage is suspected.

Limited Warranty

VMEspecialists warrants this product to be free from defects in
workmanship and materials under normal use and service and in its original,
unmodified condition, for a period of one year from the time of purchase.
If the product is found to be defective within the terms of this warranty,
VMEspecialists' sole responsibility shall be to repair, or at
VMEspecialists' option to replace, the defective product, provided the
product is returned transportation prepaid and insured to VMEspecialists.
All replaced products become the sole property of VMEspecialists.

VMEspecialists' warranty of and liability for defective products is
limited to that set forth above. VMEspecialists disclaims and excludes all
other product warranties or product liability, expressed or implied,
including, but not limited to, any implied warranties of merchantability or
fitness for a particular purpose or use, liability for negligence in
manufacture or shipment of product, liability for injury to persons or
property, or for any incidental or consequential damages.

0
Service Policy

Before returning a product for repair, verify as well as possible that
the suspected unit is at fault. Then call the factory for a Return
Material Authorization (RMA) number. Carefully package the unit, in the
original shipping carton if this is available, and ship prepaid and insured
with the RMA number written on the outside of the package. Include a
return address and the telephone number of a technical contact. For out-
of-warranty repairs, a purchase order for repair charges must accompany the
return. VMEspecialists will not be responsible for damage due to improper
packaging of returned items.

uut of Warranty Repairs

Out of warranty repairs will be billed on a material and labor basis.
The current minimum repair charge is $100. Customer approval will be
obtained before repairing any item if the repair charges will exceed one
third of the quantity one list price for that unit. Return transportation
and insurance will be billed as part of the repair and is in addition to
the minimum charge.

VMEspecialists also makes available repair on an immediate exchange
basis. In most cases, a replacement can be shipped on the day of request.

* This service is billed at a flat rate, currently 30% of the quantity one
price.

7

3. Specifications

VME compatibility: Compliance with VMEbus specification rev. "C.1"
Shares double wide front panel with SBC2, to

form single high (3U) two board set.
Provides continuity of IACK and BGOUT daisy chains

Static Memory Capacity: 128Kbytes (EPROM)
64Kbytes (RAM)
200 ns. access time
Write protect switch on front panel
Uses lithium cell for non-volatility

Serial I/O Ports: Two async, using MC68681, with integral counter/
timer and dual independently programmable baud
rate generators.

Rea! time clock: 100 year calendar, 12 and 24 hour modes

Optional functions: MC68881 floating point co-processor
MC68451 memory management

Environmental: Operating temperature: 0 to 55 degrees C
Storage temperature: -40 to 80 degrees C

Operating humidity: 0 to 90% (no condensation)
SStorage humidity: 0 to 90% (no condensation)

Power Requirements: 1.2A MAX (O.9A TYP) at +5VDC +/- 5%
(In addition to SBC2 0.035A MAX at +12VDC
specification) 0.035A MAX at -12VDC

With MC68451 MMU add O.3A MAX
With MC68881 CO-PROC add 0.15A MAX

SIZE: VME620: 129 mm. high, 20 mm. wide, 172 mm. deep
VME620-6U: 262 mm. high, 20 mm. wide, 172 mm. deep
(viewed from front panel)

WEIGHT: 0.23 Kg, 0.5 pounds.

8

4. Installation and Jumper Options

Pric, to installaticn, the board options must be configured by way cf
jumpers. The ten user configurable jumpers specify

JPR1: Address strobe timing
JPR2: LDS data strobe timing
JPR3: UDS data strobe timing
JPR4: Static memory type select
JPR5: Static memory type select
JPR6: Static memory type select
JPR7-JPR1O: Parallel sense block for configuration information

Refer to figure 2 for assistance in locating jumper block positions.

4.1 Memory management options: Jumper groups 1-3

OA
0 B JPi
0 C When using the memory management option of

VME750, connect A--B on each group JP1..JP3.
0 A You must jumper A--B when the 68451 MMU
0 B JP2 is in place.* oC

When there is no 68451 memory management unit
0 A in place, connect B--C on each group.
0 B JP3
0OC

4.2 Static memory type select

Use jumper groups JP4..JP6 to define the type of static memory (if

any) in use at locations U12 and U13. Refer to the table below:

Device JP4 JP5 JP6

2764 EPROM NONE B--A B--A
27128 EPROM B--C B--A B--A
27256 EPROM B--C B--A B--D
27512 EPROM B--C B--D B--D
8Kx8 RAM A--B NONE B--C
32Kx8 RAM B--C B--C B--C

The two static memory devices in the sockets U12 and U13 must be of
identical type. The odd addressed device (D07..DOO) should be in location
U13. The even addressed device (D15..D08) should be in U12. Use 200ns or
faster devices.

4 These options are set at the factory for 8Kx8 static RAMS.

9

4.3 Parallel sense jumper block

Use jumper groups JP7..JPIO to convey configuration information to the
processor. JP7 and JPS A..C are located beside static memory socket U13.
JP9 and JP1O A..C are located on the board edge beside the MC68881 socket.

In each case, jumper A--B to select a data value of 1. Jumper B--C to
select a value of 0.

The jumper blocks can be sensed by the MPU through a read of the 68681
DUART.

Jumper group DUART Input Pin

JP7 IP2
JP8 IP3
JP9 IP5
JP10 IP4

10

Ai a

GIL~

:~ 01
mlre

Figure 2 Ier. GrupLoato s

11I

4.4 Installation in a VMEsystem

The VME750 accessory module provides continuity of all bus grant and
interrupt acknowledge daisy chains. There is no need to jumper these
positions on the VMEbus P1 backplane.

This product has been designed to operate in a VMEbus electrical
environment. Insertion into any card slot which is not VMEbus compatible
is likely to cause serious damage. Please exercise particular care with
the 3U sized version of this product, which can be easily damaged if
inserted into an I/O slot, rather than into a standard VMEbus P1 slot.

5. Theory of Operation

The VME750 uses the following locations in the SBC2 processor's
address space:

F20000 -- F3FFFF National WM58274 Real Time Clock
F40000 -- F5FFFF Motorola MC68681 DUART
F60000 -- F7FFFF Motorola MC68881 Floating Point Processor
F80000 -- F9FFFF Motorola MC68451 Memory Management Unit
FAOOOO -- FBFFFF Static Memory Sockets U12, U13

0 5.1. Real-Time Clock

The real-time clock can be accessed through byte transfers to the
following addresses:

F20001 Control Register Split R/W
F20003 10th's of second Read ONLY
F20005 Seconds R/W
F20007 Tens of seconds R/W
F20009 Minutes R/W
F2000B Tens of minutes R/W
F20000 Hours R/W
F200OF Tens of hours R/W
F20011 Days R/W
F20013 Tens of days R/W
F20015 Months R/W
F20017 Tens of months R/W
F20019 Years R/W
F2001B Tens of years R/W
F2001D Day of the week R/W
F2001F Clock setting/interrupt register R/W

The MM58274 can count to 100 years and fully accounts for leap years.
It can work in 12 or 24 hour mode.

The VME750 does not support interrupts from the real-time clock. In
all reads and writes, only bits D3..DO are meaningful. Refer to the Nt!MM58274 data sheet for additional information.

12

5.2. MC68681 DUART

The on-board 68681 provides two asyncronous serial channels, a
counter/timer, and two programmable baud rate generators. The device can
interrupt on processor interrupt level 1 (autovector). The 68681 is also
used as a parallel input port to sense the configuration of jumper blocks
JP7 through JP1O.

Access the 68681 through byte reads/writes to the odd addresses in the
range F40001 through F4001F.

5.3. MC68881 Floating Point Co-processor

There is a socket provided for an optional MC68881 device. Software
can attempt a read or write to one of the MC68881 locations (mapped F60000
to F7FFFF). If a BERR results, then the 68881 option is not available (the
socket is empty). The user needs only insert an MC68881 into the socket at
Icoation U11 to activate this option.

5.4. MC68451 Memory Management Unit

The VME750 is designed to work with or without memory management.
Memory management will slow processor bus cycles, but is often a
requirement for UNIX(TM:AT&T) and other multi-user general purpose systems.
The 68451 mnps logical to physical addresses and permits segment write
protection. The 68451 is mapped into the processor's address space in the
range of F80000 through F9FFFF.

The socket at location U3 MUST contain either an MC68451 or a special
pass-through circuit module (when the MMU option is not required). Jumper
groups JP1 through JP3 must be set consistent with the contents of socket
U3.

5.5. Static Memory (Sockets U12, U13)

Data transfers to or from addresses FAOOOO through FBFFFF are directed
to the static memory sockets U12 and U13. Jumper groups J4..JP6 should be
set according to the two identical static memory devices in place.

There is a front panel mounted switch which can be set to either a R/W
position or to a W-PROT position for write protection of static RAM. The
odd addressed device (D07..DOO) is held in socket U13. The even addressed
device (D15..D08) is held in socket U12. The devices should have 200 ns.
or faster access time.

The static memory is powered by the on-board lithium battery for non-
volatile operation of static RAM. Be sure to use the low power versions of
static memory devices, designed for battery backup.

The two sockets, U12 and U13 can hold EPROM devices 2764, 27128,
27256, or 27512. They can hold 8Kx8 or 32Kx8 static RAMs.

13

* 6. Serial Connectors JA and JB

Ja Pinout (68681 Channel A)

Pin Number Name Direction

1 GND

3 RXDA IN

5 TXDA OUT

7 CTSA IN

9 RTSA OUT

13 GND

Jb Pinout
Pin Number Name Direction

1 GND

03 RXDB IN

5 TXDB OUT

7 CTSB IN

9 RTSB OUT

13 GND

0

14

7. Parts List

PART NUMBER DESCRIPTION PER LOCATION

1001008125 Data delay device, DDU-222-125 1 UlO
1001100327 Oscillator, 32.768 Khz 1 XTALI
1001100368 Oscillator, 3.68Mhz TTL Crystal I XTAL2
1001110001 Battery, 3V lith coin 1 B1
1001120001 Battery, holder coin 1 B1
1001210003 Switch, TIO1MH9AVB 1 SWi
1002001120 Socket, dip, machine, 20 pin 3 U8,U9,U19
1002001128 Socket, dip, machine, 28 pin 2 U12,U13
1002006810 Socket, pga, machine, 64 pin 3 U1,U3,U11
1003023226 Capacitor, tantalum, 22ufd 2 C3,C4
1003032100 Capacitor, ceramic, lOpfd, .100 rad 3 C1,C5,C6
1003032102 Capacitor, ceramic, lOOpfd, disk 1 C8
1003032334 Capacitor, ceramic, .33ufd, 256kramguard 14 C7,C9-C21
1003218001 Capacitor, trimmer, 2.1pf-18pf 1 C2
1004000101 Resistor, 100 ohm 1 R3
1004000103 Resistor, 10k ohm 4 R1,R7,R8,R1O
1004000201 Resistor, 200 ohm 1 R6
1004000330 Resistor, 33 ohm I R2
1004000471 Resistor, 470 ohm 3 R4,R5,R11
1004000472 Resistor, 4.7k ohm 4 R9,R20,R30,R31
1004704729 Resistor network, Allen Bradley, 710A472 1 RP1
1 1005003904 Transistor, 2N3904 1 Q2
1005003905 Transistor, 2N3905 2 Q1,Q3
1005010746 Diode, IN746 2 D1,n3
1005013600 Diode, 1N3600 1 D2
1006002505 Conn, 96 pin din, AMP # 532505-1 1 P1
1006011032 Conn, header standoff, 32 Pin BBS-132-GC 2.2 U2
1006032014 Conn, Molex 39-26-7148 2 J1,J2
1007020014 IC, 74LS14 1 U20
1007020245 IC, 74LS245 2 U6,U7
1007040373 IC, 74F373 2 U4,U5
1007168681 IC, MC68681 1 U16
1007201488 IC, 1488 1 U18
1007201489 IC, 1489 1 U17
1007204066 IC, 74HC4066 1 U14
1007258274 IC, W58274 1 U15
1007420153 Pal, N82S153A 1 U19
1007421683 PalTib, 16L8-15CN 2 U8,U9
1011006009 Front panel, 3U 8HP 1
1011010361 PA, SBCSACC, FAB 0320-0036 Rev A 1

15

O F1FTN• XXIIIt

DATE 09/231,o6

DESI•NE; Lehaanr:
COPANP ' VNE spec~alists
ASSENDLr S:•
LOCATION U9

/IF If,

II,/

I .*ffmeI4IeIf#0#eItt*mfltI*&H*Ie*I**e***e14***#*e*e#*e0.~ItfI•*.j

/f Allowable Target Device Typs: PALl1LI-15 .1
/ee.H~e4#eeeeoea**eHatflflf#Iflh~flthIIHe**#fI***0411**fi#/

if* Inputs ff/

FIN I INBER i?* DERF: froa systea */
FIN 'NNUFLT ; / NNU Fault ti
FIN 'CPSENSE ; it CO-proc is in place #/
PIN 4 = !CPCS ; i* CO-proc chip select '/

PIN 5 z 1#R It Write cycle 'I

FIN 6 = 'AS if 6000 AS,/
O ' 7 zUPS / /5 b6900 UDS/ #/

PIN 9 = ILDS ; i 68(0 LD5' V

FIN IMA S -4 Mwj "AS1:

FIN DELAY ; I' Delay output 'I

FIN 14 = 'WIN ; I Write inhibit .roma MP/'
Pih 15 z !RESET i It RESET, ;i

PIN 12 'PAS ; /. Physical address strobe to syst/
PIN I m !D3 i Data Strobe #/
FIN 16 z 'NNUCS it emory mangent chip select #1
PIN 17 z !PLOS ; i L LIS to syste s/
PIN 18 zPUOS ; Is UDS to syst" SI
PIN 19 a !PBERR ; Is Berr to syste si

1#4 Logic Equations ##/

PIERR z INVEH
INUFLT
CPCS & !CPSENSE

DS z PUDS
PLDS;

. NUCS.OE = RESET

MfUG b 'I

* MASUDS& 'WIN;

P.^ LD;
MA k LDS &'IN1N

PFATN: XXXIX
WMAK IFL '

DATE 0-,8 IJa;

DESIGNER Lehman ;
C0MPAN) VNE SpeciaIists

LOCATION U19

/toe***e#I#*fl*e~ee~tfelHHH**e~eme**eE6e**I#Ht**e#*He#a**&*&e#4e~/

if Aux. board SIO 6869l autovector on level 1 Il

I. Allowable Target Device Types: 82S153A

/** Inputs Wi

PIN I z 'EEC3 /* Chip select for Static GAA *i

PIN 2 z 'CLK /# Clock chip select C/
PIN '!2 ; /# 68000 LD• Cl

FIN 4 : US ; /# 60O00 UDS Cl
PIN 5 = IS1OINT ; i, Interrupt from b8691 'l
PIN b : INIPL4 ; 1* IPLI from system Cl

* PIN 7 Z1INIPLI ; iIPLI from system C

PIN 9 = !INIPLk' ; It IPLO irom system C1

PIN 9 = CL.CS ; /* Real time clock CS delayed 'I
PIN 12 1 !R ; !O write cycle

it* autputs W

PIN 11 =!RACLK ; t* ram OR cik selected *1

PIN 0 : !CLKWV I/ Write cycle to real time clk C;

PIN 14 =KEMCSHI /* Upper Ne. CS .i
PIN 15i !NENCSLO ; i Lower REM CS 5/

PIN lb 'DTACk ; /I DTACK for Nebory, CLK Sl
PIN 17 ! 'IPLO ; I IPLO to 68000 C/
PIN 18 !IPLI It IFLI to 68000)1
PIN 19 x !IPL2 ; Is IPL2 to b8000 l

/l* Logic Equations H1

DTACK.OE a RAMCLK ;

OTACK : ','l ;

NENCSHI z UDS & REMCS;

* MEHCSLO = LOS & NES;

IPL2 = INIPL;

;F61

* IFL. =

S SMOINT & IINIPLI I

CLW' z W F & LD3 t 'ETAC & CL I

RAMCLK = MEM,•
I CLKCS & CLO

0

0

FA;TN, XXXI) :
NAME CPA

DATE 09/231;o;

DESIM;EP Lehtearn

COMPM) VME specialists ;
ASSEMBLi S•:

LOCATION US

I ***********,&*****H**t**t************--,--------14*•****I***/

it Allowable Target evice Types: PALIULBA 4

;* rinputs **,

PIN :z P4:1* PhF zci address A23 t

PIN 2 z PA2 ; A24 *1

FIN 5 : FhI :* it 2/

PIN A : PA20 ; If A20 'l

PIN 5 : PA19 ; It A19 ei

* PIN 7 :PA17 I All /

PiN e z !DS ; i Data Strobe ti

FIN 9 FC K; ; 68000 Function code FC6 f/

PIN 11 2 !AS #i 6BO0 AS• C/

pg+. 14 : FU 1* b6•00 Furction code FC1 '-

FIN 15 F:: FCZ I

PIN 18 P !PAS ; /1 Physical address strobe 41

i## Outputs HCi

PIN 1U :CPCS ; .C b6SB chip select
PIN 13 !SIOCS ; if 686S1 chip select C/

PIN lb z !CLKCS ; 1# Clock/calendar chip select #I

FIN 17 a !UH' 5 ; it o0451 chip select

PIN 19 - !NENCS ; it Static RMA/ROR chip select l

/I Declarations and Intereodiate Variable Definitions ##/

PAD AS&PAS&DS&PA23&PA22&PA21&PA20 &FCO&
!FC1 ;

if* Logi Equations Cti

CPCS s PAL t PA17 & PAlS & 'PAI9

* IOCS PAD & .PAIl t PAI8 & IPA19

CLKC' PAD & PA17 I 'PALS I !PAI9

*M, ;-: FA r

W!

in -o Im
a r- -,'Q0

"fi !'zj - - - -
I T TI Rt

C dlIL

J,.~6 1,...-

vi 2 t

4, 1,- k' -.

A%

ItI~ ~ ~~C C , , i,,•••

.D I,

O "~j n______.... . . .

I_,

0 ~c -

4cg

coo a

5 Ile -J, ft4 B

(.44

ifki

IL Ka N.

J LO

B. .. N~9 -gt4Hmf

0 0
k

.49

00-

* .qr. c
e4, LIJ

CL-

LI r
%how CLft-

0--- *
;ZZ0

alýý1444;- - K,

0

'AA
bl£

4m

-ITC

AL

-Q No o t IN N4ll o111 11 11 11 11

C __ ___ ____ ___ ____ ___ ____ ___ ___000_

liii lii 111 i i iI in i mii if4

IFt0 AY t0 0A9 C e

Appendix N - Mach II Forth Manual

0

0

FORTH 83
Development System

Palo Alto Shipping Company

0

* TABLE OF CONTENTS

Introduction
2 About this Manual
3 Philosophy ot MACH 2
4 Getting Started with MACH 2
5 A Quick Introduction to FORTH
12 A Quick Introduction to MACH 2

MACH 2 Forth Topics
18 MACH 2 In Memory
24 Vocabularies
27 Local Variables
29 Stack Notation
30 Floating Point Package
32 TURNKEY

Development Tools
36 Assembler
45 Symbolic Disassembler
46 Symbolic Debugger

Interfacing to OS-9
54 The OS-9 Terminal Device
59 Files
64 Error Handling
66 Exception Handling
69 Inter-Process Communication: Signals
73 Process Parameter Passing
76 Trap Modules
77 'MACH' Format Trap Modules
83 'Generic' Format Trap Modules

MACH 2 Glossary
G-2 FORTH and ASSEMBLER Vocabularies
G-211 OS-9 Vocabulary
G-213 MATH Floating Point Vocabulary
G-217 Assembler Directives

TABLE OF CONTENTS

Appendices
A-2 APPENDIX A: Dictionary Header Structure
A-3 APPENDIX B: MACH 2 Register Usage
A-4 APPENDIX C: The Loop Stack
A-6 APPENDIX D: Subroutine Threading
A-7 APPENDIX E: Macro Substitution
A-9 APPENDIX F: Suggested Reference Readings
A-10 APPENDIXG: MACH 2 Error Messages
A- 12 APPENDIXH: OS-9 User Mode System Calls
A-24 APPENDIX I: OS-9 I/O System Cads
A-29 APPENDIXJ: OS-9 System Mode System Calls
A-32 APPENDIX K: OS-9 Error Codes
A-35 APPENDIX L: ASCII Chart
A-36 APPENDIX M: Alphabetical Listing of FORTH Vocabulary Words
A-37 APPENDIXN: MACH2 Edition 2 Information

A-40 INDEX

ii0

General Information

Palo Alto Shipping Company Sales Line: (800) 44FORTH
P.O. Box 7430 Business Line: (415)- .0(9, -

Menlo Park, CA 94026 Business Hours: M-F, 11-4 (PST) / y'9
Authors
Derrick Miley Lod Chavez

Special Thanks
Terry Noyes, Aleksey Novicov. and Tim Lee.

Larry Leifer, Professor of Mechanical Engineering at Stanford University for creating
the Smart Product Design course and for introducing Mechanical Engineers to FORTH
year after year. The Ed Werm School of Logic for the Wemian search algorithm.

Support
Technical questions should be directed to the Mach2 RoundTable on GEnie.
A Palo Alto Shipping representative will attempt to answer user questions on a daily basis.
We are limiting the usage of our business phone to introductory questions only.

GEnie
One-time registration fee: $18.00. Non-prime time access fee: $5.00/hour.
Order from: GENERAL ELECTRIC INFORMATION SERVICES COMPANY.
Voice: 1 (800) 638-9636. To join via modem:

1) Set your modem for local echo (half-duplex) at either 300 or 1200 BAUD.
2) Dial 1-800-638-8369 . When connected. enter HHH
3) Atthe U# promptenter: XJM11912.GEnie
4) Provide billing information and choose your password.

After credit confirmation, you will be able to use your password to enter the GEnie network.
Upon entering GEnie, type MACH2 at any prompt to get to the Mach2 RoundTable.

Registration
If you did not purchase Mach2 directly from PASC, please the following information to PASC:

1) Telephone number
2) Street address
3) Description of your hardware (computer type, amount of memory, disk drive capacity)
4) Location where you purchased Mach2
5) Date of purchase
6) Mach2 version number.

Those who purchase Mach2 directly from PASC are automatically registered.

II

MACH 2
Copyright 1985-87 by the Palo Alto Shipping Company
OS-9 Manual-2nd Edition

This manual and the software described in it are copywrited with all rights reserved.
Under the copyright laws, this manual or the program may not be copied, in whole or
part, without written consent of Palo Alto Shipping Company, except in normal use of
the software or to make a backup copy. Under the law, copying includes translating
into another language or format.

WARRANTY DISCLAIMERS

The Palo Alto Shipping Company reserves the right to make changes to MACH 2 to
improve its functioning or design. Although the information in this document has been
carefully reviewed and is believed to be reliable, the Palo Alto Shipping Company does
not assume any liability arising out of the application or any use of MACH 2.

"OS-9/68000" is the registered trademark of Microware Systems, Inc.
GEnie and RoundTable are registered trademarks of
Geneji Electric Information Services Company.

iv

Introduction

0

0

ABOUT THIS MANUAL

The primary goal of this manual is to give you the information you'll need to get the most out
of this interactive development system. The information is presented in three different
formats:

Discussion

The front section contains discussions on various MACH 2
programming topics. As you read through this section of the
manual, use the glossary and appendices as sources of
additional information about unfamiliar words or topics.

Glossary

The middle section is a glossary. The glossary is arranged
alphabetically, most words are explained in a word/page format.

Appendices

The final section contains the appendices. The appendices
contain very detailed information about the MACH 2 system
and also tables of information which are too lengthy to be
included in the front section.

OS-9/68000 Technical Documentation References

The revision letters for the OS-9/68000 technical documentation
references in this manual are: Operating System Technical
Manual - Revision F; Macro Assembler Usees Manual - Revision D:
Operating System Users Manual - Revision F; C Compier Users
Manual - Revision C.

m Beginning FORTH Programmers

We recommend that you use a beginner's FORTH-83 manual along with
this manual. The glossary is a good source of FORTH programming
examples. The demonstration programs included with MACH 2 are a good
source of OS-9 (and MACH 2) programming examples.

b Experienced FORTH Programmers

Some new areas you might want to explore are local variables, the infix
assembler, the symbolic disassembler, subroutine threading and macro
substitution, and the MACH2-OS-9 interface.

2
About This Manual

0

* PHILOSOPHY OF MACH 2

The major objective behind the development of MACH 2 has been to provide an
advanced, interactive programming environment for software developers where the
programmers train of thought is not disturbed or limited by the programming environment
itself.

FORTH is an appropriate language to fulfill this objective because, as a computer
language, it encourages freedom of expression. However, this same freedom carries
with it the responsibility of establishing self-imposed standards of communication
with other programmers.

Standards:
Thus, one of our goals has been to adopt standard programming interfaces wherever
possible. This has been done by using standard source files that can be edited by any
text editor. This has also been done by providing a standard (infix) FORTH assembler
that uses generic 68000 assembly syntax and incorporates as many of the functions
found in the OS-9/68000 Macro Assembler as possible. Also included is a symbolic
disassembler.

0S-9 Compatibility:
Another goal was to put the entire power of the OS-9 Operating System at the fingertips
of MACH 2 users. This has been achieved by features such as high-level support of OS-9
user trap handler modules, interactive execution of OS-9 utility commands, single-step
generation of compact, stand-alone turnkey applications, and OS-9 floating point support.

Speed:
One last goal has been to make MACH 2 run as fast as possible so that the
programmer doesn't have to worry about programming for speed. The foundation of
MACH 2 is a subroutine-threaded FORTH with automatic macro substitution which
results in code that runs at a speed comparable to a compiled high level language-
-code which INHERENTLY runs 2-3 times faster than ANY other FORTH system.
This gives the programmer the combined advantage of the powerful debugging
features of an interactive language and the speed of a compiled language, at the
same instant

3

Philosophy

0

GETTING STARTED WITH MACH 2 0
With MACH 2 you should have received this manual, the MACH 2 master disk with the
MACH2 application and additional MACH 2 demonstration programs.

The only item you need now to create your own software for the OS-9/68000 Operating
System is a system with at least the minimum 256K of memory required by OS-9.

Starting MACH 2 Up

The MACH 2 application is named MACH2 and is located in the CMDS directory.
To enter MACH 2 type MACH2. After a few moments the 'Palo Alto Shipping Company"
prompt will appear. At this point, if you hit the carriage return key you should get an "ok".
You are now ready to try the examples in the manual and on your distribution disk.

0

4

Getting Started

O

A QUICK INTRODUCTION TO FORTH
What follows is a brief introduction to the FORTH language. This is by no means a
complete exposition of the language, but if you have never programmed in FORTH
before it will give you an idea of what FORTH is and how easy it can be to program in
FORTH. For a more thorough description of FORTH we suggest you purchase a
beginners manual on FORTH from your local computer bookstore.
(See the appendices for a list of suggested readings.)

Some Guidelines..
In the following examples the boldface type is used to indicate your inputs. The plain type
is used for MACH 2's responses. Note that all spaces in your inputs are significant. FORTH
expects all words and numbers to be separated from each other by spaces or tabs.The letter
case (i.e. upper or lower) is not significant in MACH 2 (see the LOWER-CASE glossary page).
A '<cr>' indicates that you should press the carriage return key. You may use the backspace
key to correct any typing mistakes on the current line. If MACH 2 ever responds with a '?'or a
,<name> ?' you have done something MACH 2 does not understand or like. Try retyping the
line or changing the vocabulary search order (see the ONLY and ALSO glossary pages).

The MACH 2 Prompt

After you see the "Palo Alto Shipping Company" prompt try pressing your carriage return
key several times. Every time you press a carriage return you will see the FORTH prompt

<crm ok <0>

The 'ok' means as far as FORTH is concerned, everything is going well. The 'cO>' is
the MACH 2 parameter stack (the parameter stack is the main stack in FORTH, often
referred to as just ihe stack') depth indicator (see the BASE glossary page).

FORTH Is Extensible
0 The foundation of FORTH is the "FORTH dictionary*. The FORTH dictionary is

exactly that: a collection of words that define a language. Each word in the FORTH
dictionary, when called upon, performs a specific action. This action may be as
simple as moving a number from one part of computer memory to another, or as
complex as writing data to a floppy disk. This collection of words is also referred to
as the "FORTH kernel.

EXAMPLE 1: Executinq a FORTH word.
We are now going to interactively execute a FORTH word.
The word we will execute is the FORTH word 'WORDS'.
This word will list the names of all of the words in the
FORTH dictionary to the screen. To execute a FORTH
word you type the name followed by a carriage return:

5
Introduction to FORTH

0

WORDS -cr> 0
TURNKEY MAKEMODULE TCALL DUMP
.S ASCII ASSIGNMODULE
$ QUIT
DEPTH ccr=,
Hit the spacebar to continue. ,cr3,
ok <0>

Pressing any key will temporarily stop the listing. When the
listing is stopped you can press the space bar to continue
the listing or any other key to terminate the listing.

Now, writing a program in FORTH simply consists of defining a new word in terms of
words that already exist in the dictionary. Once a new word has been defined, it is
then added to the dictionary and can then be used in the definition of another word!

EXAMPLE 2: Defining new FORTH words.
Now we will create two new FORTH words. The names of our
FORTH words will be STAR and 3STAR:

: STAR 42 EMIT; crc ok 40>
: 3STAR STAR STAR STAR ; ccr2- ok <0>

Now that the new words have been defined we may execute
them (remember, to execute a FORTH word you type the
name followed by a carriage return):

STAR ccr> * ok <0>
3STAR ,ccr> - ok <0>

We start the definition of a new word with a colon. The colon indicates to FORTH that
we are about to define a new word. The name which immediately follows a colon
(STAR in the above example) will be the name of the new word. A semi-colon marks the
end of the definition of a word. Any words between the name and the semi-colon
determine what the word will do when executed.

STAR's actions will be 42 EMIT. EMIT is a predefined word that prints out the character
which corresponds to the ascii value passed to it. The semicolon marks the end of the
definition of STAR. Since 42 is the ascii value for an asterisk, when STAR is executed,
an asterisk will be printed on the screen.

6

Introduction to FORTH

0

After STAR is defined, it becomes part of the FORTH dictionary and can be used in the
definition of other FORTH words such as 3STAR. 3STAR's actions will be to print 3
consecutive asterisks to the screen. The ability of a computer language to extend
itself in terms of itself is called extensibility. This is one of many desirable features
that is an integral part of FORTH.

EXAMPLE : Using the FORTH word 'WORDS' again.
We will now execute WORDS again to verify that our two
new words, STAR and 3STAR have been appended to
the FORTH dictionary. If they have been appended they
should show up in the listing of all FORTH words:

WORDS -crm-
STAR 3STAR TURNKEY MAKEMODULE
TCALL DUMP S
ASCII ASSIGNMODULE $ QUIT
X <cr2,
Hit the spacebar to continue. -cr3
ok <0>

FORTH is an Interpretive Language
If, in Example 2, you had only typed 42 EMIT, an asterisk would have been printed on

the screen. You would have interactively executed the word EMIT. But what happened
when you defined STAR in the above example? Why was no asterisk printed on the
screen when you typed EMIT then? In FORTH there are 2 modes of operation:

(1) Compiling mode, which is invoked by a colon to
indicate you are defining the actions of a new word.

(2) Interpreting or execution mode.

In FORTH, whenever you hit the carriage return and get an "ok" printed on the screen,
you know you are in the execution mode. In this mode you can interactively execute
any word, or sequence of words that exist in the dictionary. For example, try typing
"3STAR STAR" followed by a carriage return and see what happens. This ability to
execute any word in the dictionary immediately is a consequence of FORTH being
an interpretive language. Interpretive refers to the fact FORTH interprets what you
typed in and executes it immediately.

7

Introduction to FORTH

0

The power of an interpretive language is that you can quickly, and interactively, try
out any sequence of words that you have defined. This provides an environment
where you can test out your program at any level, modify it, and test it all out again in
seconds! If you've programmed before you are probably familiar with the notion that
an interpretive implementation of a language can be notoriously S L 0 W. However,
MACH 2's internal structure is such that it runs at the same speed as traditional compiled
languages such as C or PASCAL. With MACH 2 you get speed and an interactive
development environment together. The following diagram illustrates this concept:

Q FORTH

COMPILED Faster Execution Faster Execution

LaguagSlower Development Faster Development

Metho I •[Slower Execution

INTERPRETED Faster Development

BATCH INTERACTIVE
Develonment Method

FORTH has a Stack
Having a collection of words that perform certain actions is fine, but how do these
words communicate or pass data? Before answering this question the concept of
the FORTH parameter stack needs to be introduced.

In computer lingo, another name for the parameter
stack might be called a LAST-IN-FIRST-OUT (or UFO)
queue. Think of the stack as an very tall tennis
ball can that can hold a large number of tennis balls.

Last ball in Let's say you put in a tennis ball with #7 on it, and then
4ý 4- is first ball put one in that has #2 on it, and then one with #4 on it.

out. If you go back to take one ball out, you are going to get

2 the #4 ball. And i you prefer to use the #7 ball, you are
First ball going to have to take out the #4 and #2 tennis balls back

- in is last out before you can take out the #7 tennis ball. This is
ball out. exactly how the parameter stack works.

8

Introduction to FORTH

Back to how FORTH words communicate by passing data or parameters. Some words
need data on the stack to perform their specitied actions. During execution these words
will take data off of the parameter stack. Other words leave results on the stack after they
have completed execution so that other words may use the results. Some words take
parameters from the stack AND leave results on the stack while other words may not affect
the contents of the parameter stack at all. To aid the programmer, all FORTH words listed
in the glossary use 'Stack Notation' to indicate how the particular word will affect the contents
of the parameter stack. The concept of 'stack notation' is explained in the FORTH Topics
section.

EXAMPLE 4: Placing numbers on the FORTH parameter stack.
To put a number on the FORTH parameter stack you simply
type the number (or several numbers separated by spaces)
followed by a carriage return. The stack depth indicator, the
'<n>' which follows the 'ok' prompt will always tell you how many
numbers are currently on the parameter stack:

35 ccr3 ok<1> (put I number on the stack)
3 -4 <ccrýok 43> (put 2 more numbers on the stack)

(there are now 3 numbers on the stack)

The stack depth indicator is also an indicator of what number base
is currently being used for all numeric I/O. A '$ in the stack
depth indicator indicates that the current base is hexadecimal:

HEX <cr> ok <$3> (change the number base to hexadecimal)
E <cr'o ok <$4> (put another number on the stack)

EXAMPLE 5: Displaying the numbers on the stack.
One way to display a number on the stack is to use the FORTH
word '.' ("dor). '.* will take the top number off the stack and
display it:

¢cr> E ok <$3> (take the top number off the stack and display it)

The FORTH word '.S (*dot-S") will produce a non-destructive
display of the numbers on the stack (i.e. you don't have to take
the numbers off the stack to see them):

.S <cr>
233-4 <-Top

ok <$3>

Notice that the stack depth indicator shows that our three numbers
are still on the stack. Since we are in hexadecimal base our decimal
35 is displayed as a hexadecimal 23.

9

Introduction to FORTH

4&

An example of a FORTH word that takes data off of the stack and also leaves a result

on the stack is the math operator +. This FORTH word, called *plus", takes 2 numbers
from the stack, adds them, and then puts the result on the stack:

EXAMPLE 6: Stack arithmetic.
34 66 + . <cr3 100 ok <0> (Put 2 numbers on the stack, add them

together and then display the result)
3 50 70- . Cr -60 ok <0>

The second example is a little more complicated. First we put
three numbers on the stack then, going left to rght, we replaced
the top two numbers on the stack with a subtraction result
(50 - 70 - -20) and then replaced the remaining two numbers
(a 3 and a -20 at this point) with the result of a multiplication.
Then the result, a -60, was taken from the stack and displayed.

This method of arithmetic calculation is Reverse Polish Notation (or RPN) and is
commonly found on HP calculators.

A Special Note About the MACH 2 Stack

MACH 2 is based upon the FORTH-83 standard and the stacks used in MACH 2
are 32-bits wide. Most FORTH's, both 79 and 83 versions are 16-bit FORTH's. That is,
their stacks are 16-bits wide and the word @ (see the @ glossary entry) would return
only 16-bits of data. In MACH 2 a @ returns 32-bits of data, a W@ returns 16-bits of
data, and a C@ returns 8-bits of data.

FORTH Is a Structured Language
In any kind of a program, different actions are taken depending on external input,

whether this input comes from a user at the keyboard, or from a photodiode sensor
attached to an input port of the computer. In order to determine which actions to take,
decisions have to be made.
In FORTH there exist standard control structures that control the flow of a program
depending on the decision made. These control structures have the same inherent
structure at any level of a program. This is the basis of a structured language.

EXAMPLE 7: Using the IF...ELSE...THEN program control structure.
In the following example a word is defined that looks to see if a
number on the stack is a 1 or a 0. IF it is a 1, it prints an asterisk
(42 EMIT), ELSE it prints a plus sign (43 EMIT):

10

Introduction to FORTH

PLOT (n
IF

42 EMIT
ELSE

43 EMIT
THEN ;

1 PLOT <cr> * ok <0>
0 PLOT <cr> + ok <0>.

There are only 8 basic control structures that you will ever need when writing any
software. These control structures are the following:

1) IF...THEN
2) IF...ELSE...THEN
3) BEGIN...UNTIL
4) BEGIN...WHILE...REPEAT
5) BEGIN...AGAIN
6) DO...LOOP
7) DO...+LOOP
8) CASE...OF..ENDOF...ENDCASE

More information about these program control structures may be found on the
corresponding pages in the glossary section.

0

11

Introduction to FORTH

0

A QUICK INTRODUCTION TO MACH 2 0
Now that you have mastered the basics of FORTH you are ready to take a quick tour
of MACH 2's features. This is not intended to be a complete MACH 2 tutorial but rather
a demonstration of the use of the major MACH 2 features. Refer to the table of contents
or the index to find a more complete description of any particular feature.

Checking Your Memory Availability

There are three memory areas which are important to MACH 2 and your program: the
code space (where your program code will be located), the names space (where the
FORTH headers for your code will be located), and the variable space (where your
program variables will be located). The FORTH word '?FREE' will tell you how much
space is currently available in each of these five areas:

?FREE <cr>

Code 32768
Vats : 13390
Name : 16384
ok <0>

The results of ?FREE are system dependent, the numbers you see will probably be
different than those above.

Using Local Variables

In the next definition we will make use of MACH 2's local variables. Local variables help
eliminate confusing stack manipulations by allowing you to assign names to values on
the stacK. Later, when you need the value, you execute its name to put the value on 0
top of the stack. The word #TIMES will keep a count of how many times a BEGIN...UNTIL
loop was executed before the loop was terminated by a keypress. #TIMES will keep
the running count in a local variable:

#TIMES { I total }

0 -> total \ zeroing the local variable
BEGIN \ start of the loop

1 +3 total \ increment the count each time through the loop
has a key been pressed ??TERMINAL

UNTIL
total ; <cr~ok <0> \ display the total

12

Introduction to MACH 2

0

Local variables and named input parameters (this definition does not use named input
parameters) are defined between the left and right curly brackets. #TIMES uses one local
variable named total' during its execution. Execute #TIMES to see how it works:

#TIMES ccr, ok <0>
(wait a bit...)

<cr> 2212 ok <0> \ pressing any key will stop execution of #TIMES
\ the number of loops executed will be displayed

Executing OS-9 Utility Commands

The MACH2 T command allows you to interactively execute OS-9 utility commands from
within MACH2:

$ DIR

Directory of. 01:14:11

CMDS OS9Boot SYS key.a
read sieve startup

ok <0>

Since MACH2 is a re-entrant module, you can use T to temporarily suspend this version
of MACH2 and enter another version:

$ MACH2 <cr> \ UseS to re-enter MACH2
Palo Alto Shipping Company \ Now we're in...

BYE vccr3. \ Use BYE to exit the second version.

ok <0> \ ...and now we've returned to the original MACH2

Note that this second version of MACH2 starts up much faster than the original version
since the MACH2 module has already been loaded into memory.

13

Introduction to MACH 2

Creating a TURNKEY Executable Module

In MACH2 it is very simple to create stand-alone, executable OS-9 modules.
The following example shows how TURNKEY is used to create an executable module:

NumberOne ()

5 0 DO
." This is my first MACH2/OS-9 executable module !!
CR

LOOP BYE ; 4crt ok <0>

TURNKEY NumberOne First <cr)

At this point MACH2 will have returned you to the OS-9 shell. Type 'First' to execute
your module (after your module has completed execution, re-enter MACH2):

$ First 4cr.
This is my first MACH2/OS-9 executable module!!
This is my first MACH2/OS-9 executable module!!
This is my first MACH2/OS-9 executable module!!
This is my first MACH2/OS-9 executable module!!
This is my first MACH2/OS-9 executable module!!
$

Floating Point Calculations

MACH 2 lets you use the floating point routines provided by Microware for OS-9.
As an example of their use, lets create a FORTH word which calculates the area of the
circle whose radius is passed to it on the floating point stack. We will use the formula:
area- zR A^2:

ALSO MATH <crc, ok <0>
FP -4crv ok <0> [10 (Change to floating point input mode.

Note the addition of a floating point
stack depth indicator.)

ClrcleArea (fp-radius fp-area)
FDUP (Duplicate the input)
F * (Square the input)
3.14 F, ; 4cr:..ok<0>[0] (Multiplyby x)

4.25 CircleArea 4cr, ok <0> [11 (Ask for area of circle with 4.25 radius)
F. 4cr). 56.7163 ok <0> (0] (Display the floating point result)

INT <cr) ok <0k > (Switch back to integer input mode)

14

Introduction to MACH 2

Loading and Executing Programs

The MACH2 word' INCLUDE" is used to load text program source files. INCLUDE" is
followed by one space, the name of the file to be loaded, and a trailing' "'(the trailing quote
should immediately follow the file name). The 'sieve' program is on your distribution disk:

INCLUDE" sieve" -ccr3,
Type 'sieve' to execute this benchmark program
ok <0>

sieve ccrz

4 Secs 54 Ticks I 128 Hertz
1899 primes ok <0>

EMPTY

To reclaim all of your code space, variable space, and names space use 'EMPTY'.
EMPTY will remove all of your new definitions and variables from the dictionary.

EMPTY -ccr>'
ok <0>

Using the Assembler

The MACH 2 assembler is always available. In this example we will create an assembly
language definition (a 'code' definition) which will add 1 to the number on top of the
stack, if the number is odd, when executed:

CODE IncrOdd (ni -- n2)
MOVE.L (A5),DO \ Move number into data register
BTST #0,D0 \ Cho& for odd number
BEQ.S @1 \ Exit if number is even
ADDQ.L S1,(A5) \ Add l to odd number

@1 RTS \ End of routine
END-CODE -ccr> ok <0>

The important thing to notice in this example is that MACH 2's assembler is a standard,
infix assembler. It isn't the simplified RPN assembler commonly included in other FORTH
implementations. We think this makes assembly routines written in MACH 2 much more
readable and supportable. Let's try 'lncrOdd':

4 IncrOdd .car3

ok <0>
9 IncrOdd . c'-

ok <0>
15

Introduction to MACH 2

Using the Symbolic Disassembler

The symbolic disassembler allows you to look at how your definitions were compiled into
memory:

I zncrOdd 7 IL <cr> ok <0>

IncrOdd

055232: MOVE.L (A5),DO

055234: BTST 4$0,00

055238: BEQ.S -S4 S5523C
05523A: ADOQ.L #$1 , (A5) i÷

05523C: RTS
ok <0>

Using the MACH2 Debugger

The MACH2 debugger allows you to watch your code in action. Because OS-9 is a
mufti-tasking operating system, only one person may be using the MACH2 module when
the MACH2 debugger is being used (read the debugger section for more information).
The following example shows how our 'lncrOdd' word could be debugged using the
MACH2 debugger (you enter the boldface commands):

DEBUG IncrOdd <cr> ok <0>
5 IncrOdd <cr>

055232: MOVE. L (AS),DO this is the first instruction
PC:00055232 SR:0310 X-I N-0 Z-O V-0 C-0 \ inlncrOdd
A0:00051154 A4: 00000000 DO: 00055232 04: 00000008
A1:00051152 A5: 0001FIE6 D1: 00000007 D5: 00000007
A2:00000000 A6: 00021100 02: 00000003 06: 00000007
A3:0001EA32 A7: 0002017E 03: 00000000 05: OO01EAOA

> S <cc> \ 'S' means single-step
055234 8TST #$0,DO
PC:00055234 SR:0310 X-1 N-0 Z-0 V-0 C-O
AO:00051154 A4: 00000000 DO: 00000005 04: 00000008
A1:00051152 A5: 0001FIE6 01: 00000007 05: 00000007
A2:00000000 A6: 00021100 D2: 00000003 06: 00000007

A3:0001EA32 A7: 0002017E 03: 00000000 05: 0001EAOA

>SS <Cr> 5 <Top \ show the contents of
\ the FORTH param stack

•G <cc> \ Go ahead with the
ok <1> \ rest of the word.

<cT>6 ok <0>

16

Introduction to MACH 2

MACH 2 Forth Topics

0

0

MACH 2 IN MEMORY

There are three memory areas of interest in the MACH 2 system. These are the code, names,
and variable areas used by the programmer.

CODE SPACE

The code space (dictionary space) is the place where the code portion of your definitions is
placed. MACH 2 keeps its definition headers separate from the definition code. The headers
(or names) for a definition are placed in the names space (discussed later). Each time a
definition is added, the pointer to the next available code space location, the HERE pointer,
is incremented accordingly. The following diagram shows how the addition of the definition
TEST affects the HERE pointer:

TEST DUP SWAP ROT ; <cr. ok <0>

Higher Memory Top address in
your code space.

Remaining
Code Space

-*"- top of dictionary H E R E
Code Spam after 100 ALLOT

reserved by ALLOT

JSR ROT 4- top of dictionary
code for SWAP after TEST
code for DUP top of dictionary

before TEST

L- previous definitions

Lwreo Base address of
your code space.

Code (Dictionary) Space

When you first start up in MACH 2, the HERE pointer will be pointing at the base address of
you code space. Each time you add a definition, the HERE pointer is incremented so that
it is always left pointing at the next available spot in the code space. ALLOT is a word you
can use to artificially increment the HERE pointer.

18

MACH 2 in Memory

0 Using ALLOT to Allocate Olctlonary Space

The word ALLOT may be used to explicitly increment the HERE pointer by a specified
number of bytes. ALLOT is commonly used with CREATE to reserve space in the
dictionary for tables of static data such as trigonometric tables:

CREATE Sines -ccrz, ok <0> (CREATE a dictionary header for Sines)
100 ALLOT <cr> ok <0> (Reserve 100 bytes in the code space

for the sine table data.)

In this example, the defining word CREATE is used to create the dictionary header for a
table of sine information. When the word SINES is later executed it will push the address
of the first byte of the sines table on the stack. This allows the data in the table to be
accessed. Since the headers are stored in a different location, the execution of CREATE
did not affect the above diagram. ALLOT is used to allocate the necessary amount of space
in the dictionary for the sine data. In the diagram, it can be seen that ALLOT moved the
HERE pointer up by 100 bytes. These bytes have not been initialized to any value. Now
the data may be stored in the table without fear of it being overwritten when the next
definition is added.

To find the address of the next available spot in the code space execute the word HERE:

HERE . ccr>. 54102 ok <$0>

Size of the Code Space

Unless otherwise specified, MACH2 will ask OS-9 for 32K of memory for the user code
space upon start up. If you wish to override the default code space size pass your desired
code space size to MACH2 when you start MACH2 up. For example, to set the user code
space to size to 16K bytes:

$ MACH2 -$8000

The names space is always set to 1/2 the size of the code space.

THE NAMES SPACE

The names space is where the header portion of a definition is stored. The header
for a definition contains information such as the definition name, the length of the
definition name, a pointer to the next definition (each time a definition is added in a
FORTH system it is linked into a linked list of all previously defined definitions), and a
pointer to the actual code for the definition (located in the code space). The exact
format of a MACH 2 dictionary header is given in the appendix.

19

MACH 2 in Memory

0

MACH 2 keeps the headers separate from the code so that they may be discarded by
TURNKEY when it creates your final application. The header information may be discarded
since it is only used during compilation; header information is not required for program
execution and would only take up valuable disk space if it were not discarded.

The diagram below shows the names space which corresponds to the code space shown
in the previous diagram:

Higher Memory - Top address in
your names space.

Remaining
Names Space

14- top of names space -- NP
after TEST

4- top of names space
before TEST

4-previous headers

Lower Memory _ _ Base address of
your names space.

Names Space

A pointer called the NP (name pointer) is used to keep track of the remaining names space.
Each time a definition is added, the new header information is placed into the names space
starting at the address pointed to by the NP. The NP always points to the next available
spot in the names space. After the header is in place, the NP will be incremented accordingly.
To get the address of the next available spot in the names space you can execute the word
NP (to put the address of the NP system variable on the stack) and then letch' its contents:

NP @ . -ccr; 201AE ok <$0>

Size of the Names Space

When you start up in MACH 2 you are given an empty 16K space for your program names.
You can use ?FREE at any time to check the amount of room left in your current names
space.

20

MACH 2 in Memory

THE VARIABLE SPACE

The variable space is where a program's variable data (data which will be altered during
the running of the program) should be stored. Since MACH 2 keeps the variable and
dictionary space separate, the only information about the variable space which needs to
be saved on disk as part of a program is the size of the variable space.

Location of the Variable Space

The variable space is located relative to the address contained in the A6 register of the
CPU. The data area used for the variable space is dynamically allocated by OS-9 when a
module is loaded. As the diagram below shows, MACH2 asks OS-9 for a 16K data area.
4K of the data area is used for MACH2 jump tables. The remaining 12K is used for the
variable area. The address in the A6 register is always located 32K bytes above the
base address of the data area.

- 4- (A6)if
32K

' Higher 4 Top address
Memory Remainin, of your variable

Remaiingspace.
12K unused

variable
space

top of variable space
4- after: 4 - VP

Variable Space 400 VALLOT
reserved by VALLOT top of variable s4,: ae

4- before:
VARIABLE ARRAY

space allocated for the
contents of previously"4- defined variables

4K Jump Table Entries
K Lower for MACH2 Words

Mermoryi 1 'Base address
of your variable
space.

21

MACH 2 in Memory

Size of the Variable Space

Initially, you will be given 12K bytes of variable space. To adjust the size of the variable
space use the 'MACHVarSpace' utility found in the 'CMDS' directory. Do not use this
utility from within MACH2 ! This utility will modify MACH2's module header information
to accommodate your new desired variable space size. The next time you enter MACH 2
your requested amount of variable space will be set aside. Note that there is a 64K
limit on the size of a module's "local" data area. If you request a variable space larger than
60K (4K is always taken by Mach2) the compiler will use longer addressing modes to
access data in the remote data areas. ?FREE may be used to check the amount of free
variable space remaining.

Creating New Variables

The word VARIABLE is used to create new, named variables. VARIABLE will create a
dictionary entry for the variable using the specified name.

VARIABLE Array <ccr2,ok <$0>

To get the address of the variable location in the variable space you execute the name of
the variable:

Array . -cr>67804 ok c$0>

When VARIABLE creates the dictionary entry for the variable the dictionary header goes
in the names space, the code responsible for calculating the address of the variable when
its name is executed goes in the code space, and 4 bytes of storage space for the new
variable are automatically reserved in the variable space. Initializing the contents of these
4 storage bytes is the responsibility of the programmer.

Storing and Retrieving Data To and From Variables

The word'r ('store') is used to place 4 bytes of data at a specific address and the word
c@ (letch' is used to retrieve 4 bytes of data from a specified address.

3F Array I - ctpok <0$>
Array @ . ccr>o 3F <$0>

W!', 'W@', ,C r, and 'C@' are used to store and retrieve 2 and 1 byte lengths of data.

Using VALLOT to Allocate Variable Space

If you wish to create a variable which has more than 4 bytes of storage (if you want to
store an array of data for example) use VALLOT immediately after you have created the
variable with VARIABLE:

VARIABLE Array <cr2 ok <$0> (Create the variable)
400 VALLOT -ccr2ok <$0> (Allocate 400 extra storage bytes

for the contents of the previously
defined variable.)

22

MACH 2 in Memory

A 'pointer' called the VP is used to mark the next available spot in the variable space.
Note that the VP works VERY differently than the HERE pointer or the NP. VP is the
name of a MACH 2 system variable which holds a negative offset from the address in the
A6 register to the next available spot in the variable space.

VP @ . <cr> -35B4 ok <0>

VALLOT will decrement the VP pointer by a specified number of bytes. This has the
effect of reserving storage locations in the variable space.

?FREE - A MACH 2 MEMORY UTILITY WORD

?FREE is a utility word which tells you the amount of free space currently available in your
code, names, and variable areas.

?FREE ccr>
Code 32768
Vars 10000
Name 16372
ok <0>

The sizes of certain memory areas are system dependent so the numbers ?FREE
returns on your system will probably be quite different than those returned in the above
example.

0

23

MACH 2 in Memory

0

VOCABULARIES
In FORTH, a vocabulary is a linked list of definitions. Vocabularies are used to separate
the definitions into meaningful groupings. The FORTH dictionary is comprised of
several vocabularies.

The MACH 2 Vocabularies

The initial MACH 2 dictionary consists of 4 vocabularies. These vocabularies are:

FORTH :All of the standard (FORTH-83 and others) words.
OS-9 :Af1 OS-9-specific words.
ASSEMBLER :All words used with the Assembler/ Disassembler.
MATH :All of the floating point words.

Specifying a Search Order

When a FORTH word is executed immediately (by typing its name at the keyboard)
or when it is compiled (by using it within a colon definition) the dictionary must be
searched to find out what the word should do. Since the dictionary is broken up into
at least four vocabularies (the four mentioned above), MACH 2 must be told which
vocabularies it should search through and in which order it should search. The two
FORTH words ONLY and ALSO are used to specify a search order for MACH 2.

ONLY

ONLY, as might be expected, is used to specify that ONLY one vocabulary should be
searched when MACH 2 is looking up a word. The name of that one vocabulary should
follow ONLY:

ONLY FORTH <cr2-ok <0>
The use of ONLY above tells MACH 2 that it should only search through the FORTH
vocabulary's list of words. If the word hasn't been found by the time the end of the
vocabulary list is reached, MACH 2 will display a 'cname> ?T error message.

ALSO

ALSO is used to specify that another vocabulary should ALSO be searched by MACH 2:
ALSO OS-9 •cr ok <0>

If this were used after ONLY FORTH above, MACH 2 would know that it should search
through the OS-9 vocabulary list first, and then, if it reached the bottom of the OS-9 list
without finding the word, it should start searching through the FORTH vocabulary list.
ALSO may be used to specify up to 5 additional vocabularies to be searched. Seven
vocabularies may be included in the search order at once. ALSO cname> will cause
the cname> vocabulary to be searched first.

24

Vocabularies

0 Adding Definitions to a Vocabulary

The word DEFINITIONS is used to specify to which vocabulary list new definitions
should be appended :

DEFINITIONS ccr>i ok <0>

DEFINITIONS will make the vocabulary which is currently being searched first (the
'transient' vocabulary) the vocabulary to which all subsequent definitions will be added.
In this case, since OS-9 has just been made the transient vocabulary by ALSO, the OS-9
vocabulary would now be the vocabulary to which definitions will be appended.

After,
ONLY FORTH <cr2 ok <0>
ALSO OS-9 , cr>ok <0>

the search order would be
I FORGET gets rid of

everything defined
New - • after a certain point
Definitions I in time. no matter| | =which vocabulary

EMPTY gets rid of OS-9
everything above Vocabulary
this protecting line. MATH

Vocabulary

When the search order
ASSEMBLER is SEALed, the link to
Vocabulary the words used to modify

the search order is
snipped. From that

Protected • point on the application
Words -. -- % may only use wo..s

FORTH J_ found in the 'frozen'
Vocabulary y search order.

Words used to modifYL6.
the search order

25

Vocabularies

0

ORDER and WORDS - Two Search Order Utilities 0
The word ORDER will print out information about the current search order. It will show
which vocabularies are being searched, in which order they are being searched, and
to which vocabulary definitions are currently being appended. Upon system start-up
the vocabulary structure will be set as follows:

ORDER <cr>
Search Order -> FORTH
New Definitions -> FORTH

ok <0>

The word WORDS will display a listing of all words in the transient vocabulary.

Application Vocabularies

Certain applications may require that a limited set of application words are available
for execution from within the running application. This type of application may NOT
be sold or distributed unless special arrangements have been made with the
Palo Alto Shipping Company in advance.

The word SEAL is available for this purpose. SEAL will freeze the current search order
and will also remove the user's ability to change the search order by cutting the link
to the set of search order modification words. As the diagram on the previous page
indicates, the set of search order modification words is usually searched at the end of
every dictionary search.

Creating Vocabularies

New vocabularies may be created with the use of the defining word VOCABULARY.
MACH 2 may have up to 15 total vocabularies. Since four vocabularies already exist,
users may define up to 11 of their own. VOCABULARY is used as follows :

VOCABULARY MINE .cr> ok <0>

Definitions may be added to the new vocabulary by using the words ONLY, ALSO,
and DEFINITIONS as described above.

Removing Words from the Dictionary

The word FORGET may be used to remove a definition, and all definitions added
after that definition, from the dictionary :

FORGET ,=definition-name92 ,ccr> ok <O>
The word EMPTY will remove all definitions which have been added to the dictionary
See the previous diagram for an illustration of the effect of these two words.

26

Vocabularies

0

LOCAL VARIABLES AND NAMED INPUT PARAMETERS
Local variables are those whose contents are valid only inside the definition in which
they are used. Because they are local variables, as opposed to global variables, they will
support re-entrant code when writing recursive or multi-tasking programs. Local
variables may have the same names in different definitions without conflicting.

Named input parameters, which are sin"py initialized local variables, are used to give
names to the input parameters on the stack. This greatly simplifies routines which
would otherwise require complex stack manipulation.

The following comparison shows that the use of local variables and named input
parameters also greatly increases the readability of FORTH words which perform stack
manipulations.

Contrasting Local Variables with Conventional FORTH Stack Manipulation

QUADRATIC EQUATION

-b ±_ lrb2 4ac

2a

Local Variables

Quadratic { a b c I radical 2A - xl '{d D are used to set up local variable list
b b
4a c (b 2 - 4ac
SORT -2 radical (take square root of number under radical)

a 2* -3, 2A (2a)

b NEGATE radical - 2A / (calculate the + and - results...)
b NEGATE radical + 2A / ; (and leave both on stack)

Conventional FORTH Stack Manipulation

Quadratic (a b c xl x2) Parentheses are used for comments)
2 PICK * 4 4ac)
OVER DUP * SWAP - b2 -4ac
SORT take square root of number under radical)
SWAP NEGATE 2OUP + (calculate the + root)
3 PICK 2' / 3,R (divide by 2a and save on loop stack)
SWAP - SWAP 2' / calculate the - root, leave on stack)
R, (retrieve + root and leave on stack)

Both of these definitions will return the roots on the stack, however the example which
uses named input parameters and local variables is MUCH easier to read and to write.

27

Local Variables

Specifying Local Variables In the Local Variable List
The local variable list is contained within the "(" and the 1". In this example there are
four local variables, with two of them, "x' and "y', specified as named input parameters.
Any names before the "I" are considered named input parameters and require
corresponding data on the stack prior to execution of the definition. Any names after the
"1" and before the "-" are treated as local variables. The contents of local variables
are undefined until written to by using the '->' operator. Information after the '-' and
before the -I- is a comment used for stack notation.

SKEWED {xy I xl yl - result }
x -2 xl
y +2 xl
x y - .- yl Named Input Parameters
xl yl X are initialized from values

on the parameter stack.

3 4 :HYPOT { x y - result)
XX*
yy * + The number on top of the stack will

go to the rightmost named input
parameter in the list.

The '-2,' , '^, and '+2' Operators

In the above example, the '-D' (pronounced "save-to) operator is used to store the number
on top of the parameter stack, into the specified local variable. The -' (pronounced "hart)
operator is used to obtain the address of a local variable (see the A glossary page for an
example of its use. The '+>' (pronounced 'plus-to" operator is used to add the number on
top of the parameter stack to the specified local variable.

Speed Considerations

The set-up and initialization of local variables occurs at execution time. This does not
mean, however, that a word which uses local variables will take longer to execute. For
example, the local variable square root example on the previous page executes just as fast
as the non-local variable example. In most cases, the decrease in execution time due to
program simplification gained by the use of local variables will completely offset the
extra execution time required to set the local variables up.

Recursive Definitions Using Named Input Parameters

Local variables are especially well-suited to recursive definitions (see the Fibonacci example
on the demonstration disk). Since the local variables are implemented with a method called
stack framing, the amount of recursion that can occur in a recursive definition is limited only
by the available subroutine stack space.

28

Local Variables

4

0 STACK NOTATION
Stack notation is a very critical component of FORTH programs. Stack notation is
used to describe how execution of a FORTH word affects the contents of the
parameter stack. Here is an example :

:@CHAR (a n - c) +C@
In the above example, the stack notation corresponding to the definition @CHAR
is in bold typeface. The letters to the left of the '-' specify the input parameters
@CHAR expects to find on the parameter stack. The letters to the right of the'-'
specify the output parameters @CHAR will return on the stack. By including this
special FORTH comment immediately after each new word, the behavior of a FORTH
word can be assertained at a glance.

General Format of Stack Notation
The following examples show the general format used for stack notation:

INPUTS - OUTPUTS

EX. (n1 rn-n) (c) (-a) (nl n2-f)

If a word does not affect the contents of the parameter stack, stack notation may be
omitted. If a word has only an input and no output, the dash is sometimes omitted.

Characters Used In Stack Notation
Four different lowercase characters are commonly used inside of a stack notation
comment :

a - address
n - number
c -sc character
f - boolean flag

Since MACH 2 is a 32-bit implementation of FORTH (i.e. its stacks are 32-bits wide), all
addresses (a), numbers (n), characters (c), and flags (f) will be 32-bit values while on the
stack.

Stack Notation with Named Input Parameters

When using Named Input Parameters, the local variable list should be used to indicate
the stack notation for the word. The general format used for a local variable list is:

INPUTS I LOCAL -- OUTPUTS)

EX x y I -y -resulA) jxy I) (xy) I juv-doue) I Iuv)

The OUTPUTS field, which follows the dashes, is treated as a comment and does not
affect execution of the word. The OUTPUTS field in a local variable list should be used
to indicate which values, if any, the word leaves on the parameter stack.

29

Stack Notation

0

FLOATING POINT 0
MACH 2's floating point operators use the MATH module provided by Microware.
This module contains routines for basic floating point math, extended integer math,
type conversion, and transcendental and extended mathematical functions. All of the
floating point words and operators that make up the MACH 2 floating point package are
found in the MATH vocabulary.

Precision

The routines in the math module support the following data formats:

Integer types: unsigned 32-bit unsigned integers
long 32-bit signed integers

floating point: float 32-bit floating point numbers
double 64-bit double precision floating point numbers

The floating point math routines use formats based on the proposed IEEE standard for
compatibility with floating point math hardware. 32-bit floating point operands are internally
converted to 64-bit double precision before computation and converted back to 32 bits
after as required by the IEEE and C language standards. (Therefore, the float type has no
speed advantage over the double type.)

The precision of the following transcendental and extended math routines is set using
the MACH2 word PRECISION. The precision may be set from I bit (1E-001) to 14 bits
(IE-014) by passing a number from 1 - 14 to PRECISION.

FCOS FSQRT
FATAN FSIN
Flog FTAN
Fin FyAx

The Floating Point Stack

An independent stack, called the floating point (FP) stack, is used for all floating point
operations. This stack differs slightly from the parameter stack in that it has room for a
maximum of 20 FP numbers only. Numbers on the FP stack can be manipulated with standard
stack operators such as FROT, FOVER. FSWAP, FDROP, FDUP, etc. Floating point
numbers can also be converted to integer and transferred to the parameter stack with the
F>I operator. The I>F operator performs the reverse function.

30

Floating Point

Ie

Floating Point Mode

For floating point numbers to be recognized as such, you have to be in the FP mode.
The FP mode is invoked by executing 'FP" from the MATH vocabulary. Once you are in the
FP mode, any numbers that are entered with a decimal or an exponent are put on the floating
point stack. Examples of valid floating point numbers are shown below:

-1.65e-05 9119.
0.0045 345.88E+67

Note that in the FP mode any integers (numbers with no decimal point) that are entered are
still put on the parameter stack. While in the FP mode you will notice a number in square
brackets after every "ok*. This is the floating point stack depth indicator and works the same
way as the parameter stack depth indicator.

The FP mode is exited by executing "INT*. This puts MACH 2 back in the integer mode and
any subsequent FP numbers will not be recognized and the floating point stack depth
indicator will not be shown.

Displaying Floating Point Numbers

Floating point numbers can be displayed with the 'F." operator in a FIXED point format.
To display numbers in the fixed point format, execute the word 'FIXED' preceded by the
number of digits to follow the decimal point.

EXAMPLE:

ALSO MATH cN okk<O>
FP -ccr> ok <0> [0]
23.45678 .crN Ok <0> [1]
FDUP -orN ok <0> [21
2 FIXED ,cr* ok <0> [2]
F. 23.47 ccr3 ok <0> [Il
NT .ccr. ok <0>

Floating point numbers and operators may also be used within colon definitions:

ALSO MATH crsOk <0>
FP <cr* ok <0> [0]
: TEST 3.4 2.6 F* ; ,=cr> ok <0> [0]
TEST F. <ccr* 8.84000 Ok <0> (01
INT <ccr3 ok <0>

For a summary of all of the floating point words and operators please refer to the floating
point Glossary section. For more information on the OS-9 math module see the Math
Module chapter in the OS-9168000 Operating System Technical Manual.

31

Floating Point

0

TURNKEY
Traditionally, one of the hardest tasks for a FORTH system (or any interactive system)
was the creation of stand-alone applications. Since the primary purpose of any
development system IS the creation of applications, our goal was to make the MACH2
TURNKEY process as simple and as powerful as possible.

The MACH2 TURNKEY process is simple because it allows you to turn your programs
into OS-9 executable program modules with just one line of code. It is powerful
because it strips away the development environment code which is not required
for a stand-alone application in order to create a minimal sized program module.

Using TURNKEY

Before using TURNKEY you must load your program into MACH2, When the loading
process is complete, use TURNKEY as follows:

TURNKEY ,cmaln-word> <module-name, <cro

<main-word> should be the name of the word in your program which performs all
program initialization and starts the program going. <module-name> is the name you
wish to be assigned to the executable program module created by TURNKEY. After
you press the carriage return, TURNKEY will start the process of turning your program
into a stand-alone application. When TURNKEY is finished it will return to the shell
and your application should be visible if you perform a directory listing of your current
execution directory.

TURNKEY Examples

For an example of a simple TURNKEY application, please refer to the TURNKEY glossary
page in the back of this manual.

How TURNKEY Works

TURNKEY first creates a new executable file and copies only the MACH2 kernel code
(approximately 5K bytes) to the file. Next, TURNKEY takes all code found in the user
code segment and writes it also to the executable file. Finally, TURNKEY performs
all the actions required to have OS-9 recognize the file as an executable program
module (fixing the CRC, preparing the module header, etc.). Since the MACH2 compiler
naturally generates relocatable code (PC-relative), the executable program modules
generated by TURNKEY will be classified as 'position-independenr.

32

TURNKEY

0

VERBOSE, a TURNKEY Utility

To ensure that your application program does not contain any compiled references to
MACH2 compiler words (since the compiler words are not included in a TURNKEY
application) you should place a positive value in the system variable 'VERBOSE' before
loading your program. The next time you load your program, any illegai references to
compiler words will be flagged with error messages.

ABORT Considerations

The default run-time code executed during abort handling (when your program uses the
word ABORT or ABORT") is the word QUIT. QUIT is a compiler word and thus cannot be
included in TURNKEY applications. If you do wish to use ABORT or ABORT" in your
application be sure to install a custom abort handling routine (see the ABORT
glossary entry).

33

"3NKEY

Notes: 0

0

34

TURNKEY

0

Development Tools

THE MACH 2 INTERACTIVE ASSEMBLER

An Interactive Assembly Environment for 68000 Programmers

MACH 2 can be used exclusively as an interactive assembly language development
environment for those assembly-language programmers who'd rather not write in FORTH.
The assembler uses completely standard syntax and attempts tc follow the syntax of the
OS-9/68000 Assembler wherever possible. New subroutines can be typed in from
the keyboard or loaded in from files. By merely typing the name of a subroutine it will be
executed. Each and every subroutine in your program can be tested and debugged
symbolically and interactively, one at a time. The entire program need not be run in one
fly-or-die pass.

The most notable aspect of the MACH 2 Assembler is that it is NOT the RPN-format
assembler usually included in most FORTH systems. It is a standard, infix 68000
assembler. 68000 assembly examples may be copied straight from most references
without alterations. All the mnemonics are standard (see the appendix for a list of them).

The increase in readability and supportability of assembly language routines written in
the MACH 2 assembler over assembly routines written in RPN assemblers is dramatic.

FORTH and Assembly Language

Why is an assembler needed with FORTH?

Speed and control. MACH 2 runs a bit slower than hand-optimized code would.
Also, there is no explicit access to the actual CPU from MACH 2. With a just a little
knowledge of how FORTH runs, programmers can take control of the 68000 and
still work within an interactive, development environment (MACH 2).

What is the advantage of FORTH then?

FORTH can be thought of as a library of pre-written assembly language routines.
This library is at the programmer's fingertips and allows lightning-fast application
development. In fact, these FORTH routines already do many of the common
things assembly language programmers will want to do in their programs (move
blocks of memory, switch parameters on the stack, display characters on the
screen, take numeric input according to a base).

Customized assembly language routines should only be used to tighten up
FORTH code or to perform hardware-related tasks where speed is of the utmost
importance.

The following pages provide a brief introduction to the MACH 2 interactive assembler.
The appendix contains additional information. For more information on 68000
assembly language programming, see the bibliography for recommended reference
readings.

36

MACH 2 Interactive Assembler

0 USING THE MACH 2 INTERACTIVE ASSEMBLER

CODE Definitions

The major difference between writing assembly code in MACH 2 and writing assembly
code in a stand-alone assembler is that in MACH 2 you must surround all of your
assembly subroutines and code fragments with the words CODE and END-CODE.
CODE is used to name the routine and END-CODE is used to mark the end of the routine:

CODE 4/ (n - n/4) (CODE makes a dictionary header for a new word,)
MOVE.L (AS))+,O0 ('41, and starts compiling. The words between)
ASR.L #2,DO (CODE and END-CODE are run when'4 is executed.)
MOVE.L DO,-(A5) (From the stack notation, a number should be on the)R TS (stack. That number will be divided by four and)

(returned on the stack. END-CODE signals the end)
END-CODE (of the definition and stops compilation.)

The word CODE puts FORTH into the compilation mode, adds the ASSEMBLER
vocabulary to the search order, and installs an ABORT vector to handle local branching.

The word END-CODE is like ';' except that ; will automatically compile an RTS ($4E75)
into the definition being constructed. In a code definition this must be done explicitly
by using the RTS mnemonic. This is an important point. In addition, the current
number base is saved by CODE and restored by END-CODE. During compilation the
base is decimal.

Assembler mnemonics such as MOVE.L are immediate compiling words whose job it
is to parse the input stream and compile the correct op-codes into the dictionary. Only
later, when the word the assembly language instruction was compiled into is run, will the
68000 actually run a MOVE.L instruction.

SReferencing Previous Definitions.

Two methods are available for making references to other definitions. Either use the name
by itself (since the system is in compile mode while in code definitions, the FORTH compiler
will do the compiling):

CODE Examplel (ni n2 - n3
OVER
SWAP

RTS
END-CODE

...or by using the assembly language 'jump to subroutine' instruction: 'JSR <name>'
(in this case the assembler wil compile <name> without regard to immediate or macro
bits--see the macro discussion which follows):

37

MACH 2 Interactive Assembler

0

CODE Example2 (ni n2 - ni n2ni)n
JSR OVER
JSR SWAP
JSR
RTS

END-CODE
If the above method is used, any FORTH words which contain characters which are also
used as arithmetic operators in assembler expressions (*, /, -, /MOD, FORTH-83, etc.),
must be surrounded by quotation marks (see - in the above example).

Making OS-g System Calls from Assembly

To make an OS-9 system call from within a CODE definition, use the 'OS9 assembler
psuedo-instruction:

CODE SendSIgnal (proceselD signal - errorcode
MOVE.L (AS)+,D1 get signal to send from stack
MOVE.L (AS)+,O0 \get intended receiver's process ID from stack

Ose F$Send \ make the F$Send call to the OS-9 kernel module
BCC.S @NOERR \ if carry bit dear then no error occurred

EXT.L D1 \ otherwise, extend the word-length error code
MOVE.L D ,-.(AS) \place the error code on the parameter stack
BRA.S @EXIT k always place an RTS at the end of a subroutine

@NOERR
CLR.L -(AS) \ return zero if no error exists

@EXIT
FTS \ return from subroutine

END-CODE

There are many important things to notice in this example. First, the line 'oS9 F$Sencr
is equivalent to the following assembly language sequence:

TRAP #0
DC.W a

Trap #0 is the software exception vector used to access the system calls in the OS-9
kernel module. The word-length data following the trap call is the selector code used to
identify which routine in the kernel is being called. A listing of the selector codes
corresponding to all available OS-9 system calls is included in an appendix.

The register usage for all of the OS-9 system calls is listed in chapters 14, 15, and 16 of
the OS-9/68000 Operating System Technical Manual. Many of the system calls will
return, as this call did, with the carry bit set I an error occurred. Finally, note that it is
very easy to interact with the MACH2 parameter stack.

38

MACH 2 Interactive Assembler

0

ASSEMBLER SYNTAX

MACH 2 code definitions may contain some or all of the following:

"* instructions (68000 assembly language instructions or FORTH words)
separated by at least one space or psuedo-instructions (.ALIGN, DC, etc.)

"* local labels

o comments

Local Labels

Local labels are only valid within the CODE definition in which they are used. Local
labels must be in the form @xxx where xxx is any ascii string which does not contain
spaces. Only 16 forward references may be made to any single local label but any
number of back-references are allowed.

The definition of the FORTH word 0= uses a local label for a forward branch:

CODE 0= (n f)

MOVEQ.L #0,D0
TST.L (A5)+
SNE.S @1
MOVEQ.L S-1,00

@1 MOVE.L 00,-(AS)
RTS

END-CODE
MACH

Instructions and Pseudo-Instructions
An instruction can be a 68000 instruction or a previously defined FORTH word. 68000
instructions are described in the 68000 Reference Manual, Fourth Edition. Explanations
of MACH 2 FORTH words are in the glossary. If an instruction requires an operand, at
least one space should separate the instruction and operand.

A pseudo-instruction is an assembler instruction which generates code but is not actually
a 68000 instruction. Pseudo-instructions help improve program readability. The pseudo-
instructions provided by the MACH2 assembler are described later in this chapter.

Comments

The standard FORTH commenting words '(' and Vshould be used for comments in
assembly language routines. See the '(' and "' glossary entries. The '(' commenting
word supports nested comments.

39

MACH 2 Interactive Assembler

ASSEMBLER EXPRESSIONS

Addressing modes and assembler directives often use expressions as part of their
operands. Numbers, and symbols that represent numbers can be used in expressions.

Numbers
Three types of numbers may be used: decimal, hexadecimal, and binary.

308 Decimal numbers are the default.
$3FC Hexadecimal numbers must be preceded by al''.
% 11 0 Binary numbers must be preceded by a l/6'.

Operations

The MACH 2 assembler supports the following arithmetic, shift, and logical operations
in an expression:

Type Operation Operator Comment

Arithmetic Addition +
Subtraction
Multiplication
Division / Integer result
Negation -

Shift Shift Right >> Zeros shifted in
Shift Left << Zeros shifted in

Logical And &
Or

Operator Precedence

Multiple operators in an expression are evaluated in the following order (operators with
the same precedence are evaluated from left to right) : 0

1. Operations in parentheses (innermost parentheses evaluated first).
2. Negation.
3. Shift operations.
4. Logical operations.
5. Multiplication and division.
6. Addition and subtraction.

As the following example demonstrates, the use of inline math in assembly code can
improve program readability:

MOVE.W #1<8.+42,D1 VS MOVE.W #298,D1
OS9 FePErr OS9 F$PErr

40

MACH 2 Interactive Assembler

* Symbols
In the MACH 2 assembler, a symbol is a string used to represent either a number or a
complete effective addressing mode. Numbers are assigned to symbols with the
defining word CONSTANT or the assembler directive EOU. A symbol is assigned to an
effective addressing mode with the ECU directive. Any character may be used in a symbol
string except for the following: W', ',', ')' , the digits 0 - 9, and the arithmetic operators
listed on the previous page. Do not use the names of any predefined FORTH or
ASSEMBLER words (e.g. TYPE, AO) for symbols.

ASSEMBLER DIRECTIVES

EQU , A Symbol Definition Directive

The EQU directive is used to assign a numerical value, expression, or an addressing mode
to a symbol.

EQU 12 Motor3Offset \ using EQU to assign the number
\ 12 to the symbol Motor3Off set,

EOU 3"4 Motor3Offset I using this expression with EQU would
\ also work

EOU Motor3State Motor3Offset(AO) \ using EQU to assign the addressing
\ mode 12(AO) to the symbol
\ Motor3State

The use of symbols with assembly language tends to produce much more readable and
meaningful source files. For example, both of the following instructions would obtain the
the value which indicates the current state of motor #3 from an array of several motor state
flags. The instruction which uses a symbol gives a better idea of what is going on:

With symbols: MOVE.L Motor3State,DO
Without symbols: MOVE.L 12(AO),00

When the string 'Motor3State' is compiled it will be replaced with the addressing mode
'ioComp(AO)' where 'ioComp' is the constant 12.

DS, A Data Storage Allocation Directive
The DS directive is used to reserve space for variables in the variable space.
Length is an expression which specifies the number of bytes, words, or long words
to be reserved :

LABEL -.name-of-space> 0S.B length
LABEL narme-of-spece, DS.W length
LABEL 4,arne-of-space2, O.L length

Ex: LABEL CurrentTlme OS.L 1

41

MACH 2 Interactive Assembler

The above ex- aole is equivalent to the following use of the FORTH word VARIABLE:

VARIABLE ,4name-of-space" (CellaDestred) (size) * 4 - VALLOT

Executing the name of the storage space will put its address on the stack, just as in FORTH.
Examples of accessing DS storage areas from assembly:

MOVE.L MYVARIABLE,D0 (fetch)
MOVE.L DO,MYVARIABLE (store)

ASSEMBLER PSEUDO-INSTRUCTIONS

Data Allocation Pseudo-Instructlons - DC , DCB

In a MACH 2 program, the memory space is divided up into two parts: the code space
and the varable space. Define Constant (DC) and Define Constant Block (DCB) are
used to define constant data which is located in the code space (program area).
Define Storage (DS) is used to allocate space for variables in the variable space (the
uninitialized data area). The MACH2 assembler has no provisions for allocating data
in the initialized data area.

DC (Define Constant)

The DC pseudo-instructions below will place data in the code space. The three different
forms of the DC pseudo-instructions generate data which is either byte aligned (DC.B), word
aligned (DC.W), or long word aligned (DC.L). The DC.W and DC.L pseudo-instructions will
always align their data on word or long word boundaries, respectively.

HEADER -amem-of-constant6 OC.3 value(s)
HEADER narme-of-canstant3 DC.W value(s)
HEADER 4name-of-conatant, DC.L value($)

Ex: HEADER MotorOn DC.B $A

Multiple values should be separated by commas. A T must be used before a hexadecimal
value. (Note that DC.B $A is equivalent to HEX A C,) A /' must be used before a binary
value. Arithmetic expressions may also be used with DC.

42

MACH 2 Interactive Assembler

The DC.B directive may be used to lay strings into memory as follows. Note that the string
should be delimited by single quotes. To define a string constant which contains a single
quote the single quote must be preceded by a single quote. .ALIGN should be used
after the definition of a string constant to ensure that the dictionary pointer ends up on an
even word boundary.

HEADER CountedStrIng DC.B 5,'Hollo'
.ALIGN

HEADER C-String DC.B 'Hello'.0
.ALIGN

HEADER StrlngWlthauote DC.B 'Don"t'
.ALIGN

DCB (Define Constant Block)

The DCB pseudo-instruction is used to reserve blocks of memory in the code space
that are to be initialized to a certain value. Length specifies the number of bytes (DCB.B),
words (DCB.W) or long words (DCB.L) in the block. Value specifies the value to be
stored in the bytes, words, or long words which comprise the block.

HEADER 4name-of-data-block=, DCB.3 length.value
HEADER cname-ef-deta-blockx DCB.W length,value
HEADER nmname.f-data-blockb DCB.L length,value

Ex: HEADER ThreeSpaces DCB.W 3,$20

The above example is equivalent to a HEX 20 W, 20 W, 20 W,.
The address of a data block is also obtained by licking' its header.

Examples of accessing DC(B) data from assembly language:

CMP.B MotorOn,D0 (Compares what is in the DO to S A)0MOVE.B Motor~nD (Moves the byte value $A into the DO)

LEA ThreeSpaces,AO (Puts the address of ThreeSpaces in the AO register)

The TCALL and OS9 Pseudo-Instructions

The OS9 pseudo-instruction was discussed previously. The TCALL pseudo-instruction
is used to generate calls to user trap handler modules. TCALL's syntax and an example
of its use are shown below:

TCALL <trap vector#>,<cfunctlion code>

CODE CallTrapModule
TCALL 3,8
RTS

END-CODE

43

MACH 2 Interactive Assembler

0

The <trap vector#> is the number of the 68000 software exception vector (#0-15) used
to access the trap handler module (refer to the section on user trap handler modules for
more information). <function code> is a value which will be passed from the calling program
to the trap module. The TCALL pseudo-instruction will generate the following assembly
language sequence:

TRAP <trap vector#>
DC.W <function code>

Note that the definition of the OS9 pseudo-instruction is TCALL 0,<selector>.

MACH 2 MACROS

MACH 2 allows macro substitution (see the discussion in the appendix). One bit in the
header of a word is reserved as th,. MACK- bit. If a word with its MACH bit set is encountered
during compilation, all of the assembly language instructions which comprise the word will be
laid into the definition being built. Normally, a JSR to the executable code for the word
would be compiled. This technique can be used to decrease execution time of words and,
;, times, save space. Both colon and code definitions may be marked as macros.

To create a FORTH macro use the word 'MACH' after the code definition. The word
DUP has been defined as a MACH 2 macro word for two reasons. One reason is that
the opcode which does a DUP takes up half the memory as the opcode for a
jump-to-subroutine instruction. The second reason is that it is much faster to execute
in-line code than to jump to a routine in a separate location and then return.

CODE DUP
MOVE.L (AS),-(AS)
RTS

END-CODE MACH

Three precautions should be observed when setting the MACH bit on a word:

1) Only the instructions up to the first RTS will be transferred so make sure the
routine to be 'macro-edc has only one RTS and that the RTS is in the
last line in the routine.

2) Any routines which contain PC-relative references to words outside of the
current code definition will not run correctly if moved into a definition in a
different location.

3) Excessive use of MACH words may yield a large increase in program size with
only a small speed improvement.

MACH sets bit 6 in the count byte of the name field (see the dictionary header appendix).
It works exactly Ike the words IMMEDIATE and SMUDGE.

44

MACH 2 Interactive Assembler

* THE MACH 2 SYMBOLIC DISASSEMBLER

A disassembler could be described as th, static equivalent of a debugger. The debugger
lets you observe your code dynamically, as it runs. The disassembler lets you look at your
code statically, it lets you see the way your code has been put into memory. If your program
is written in high-level FORTH, the disassembler lets you see the assembly language
instructions the MACH 2 compiler used to implement your FORTH words.

A disassembler performs the opposite function of an assembler. When a program is
assembled, all of the human-readable commands (such as MOVE.L DO,D1, or JMP (AO))
are converted to the binary numbers which the computer understands. The human-readable
commands are called instruction mnemonics and their corresponding numerical valts are
called opcodes. A disassembler will take the opcodes generated by an assembler and
convert them back to the instruction mnemonics which a person understands.

Symbolic Disassembly

The MACH 2 disassembler takes the disassembly process one step further by also
listing the name of the FORTH word which is currently being disassembled to the right
of the corresponding assembly instruction. This helps you keep track of where you are
in a particular word. The action of associating a name (symbol) with an instruction while
disassembling is called symbolic disassembly.

IL: The MACH2 Disassembly Command

To access the MACH 2 symbolic disassembler use the 'IU disassembly command
IL is located in the FORTH vocabulary. IL will disassemble 'counr instructions starting at
the specified address. The names of the routines being disassembled will also be listed
in-line with the instructions being displayed.

stort-address count IL

Ex: ALSO ASSEMBLER -ccr> ok <O>
HEX -4cro ok <$0>
10000 20 IL ccr-

The above example will disassemble the 32 instructions starting at address 10000 hex.
If there are no valid instructions at the address provided, the disassembler will still attempt
to convert the numbers it finds into instruction mnemonics. The disassembly will appear
random.

Note: The MACH2 disassembler code is located in a user trap module which is accessed
by MACH2 through software exception vector #13.

45

MACH 2 Symbolic Disassembler

THE MACH 2 SYMBOLIC DEBUGGER

When your program is not running correctly and you cani understand why or. when you
want to step through your code JUST to make sure its doing what you think it is, it's time
for the debugger.

A debugger is a tool which lets you watch your pro jram run, assembly instruction by assembly
instruction. After each instruction executes you c; n examine or change the contents of the
registers, memory, or FORTH stacks. If you would only like to see a small section of your code
execute you can insert a break point (a STOP! command) at the beginning of the section of
interest and then run your program normally. When the breakpoint is encountered the
debugger will stop axecution of your program and display the contents of all 16 68000
registers and the assembly language instruction about to be executed.

Invoking the Debugger

In order to use the debugger, you must somehow 'invoke' or 'call' it. There are two ways of
entering the debugger:

#11 Compile the DEBUG command Into a definition

If you include the word DEBUG in one of your definitions, the debugger will be
entered whenever you execute that definition.

: TEST DEBUG 100 DO I . LOOP ;

If you were to execute TEST, the debugger would stop execution right before
the DO...LOOP.

#2 Execute the DEBUG command Interactively

If you interactively execute the word DEBUG, the debugger will stop the
execution of MACH 2 immediately:

DEBUG <cr>

If you enter the debugger this way you will not know where the debugger
has stopped. You will have to use other debugger commands to get to
the section of your program you wish to examine.

if you interactively execute DEBUG followed by the name of a pre-defined
word, the debugger will immediately set a break at the first instruction in the
word. The next time the word is executed, the debugger will be entered:

: GO 2 3 DUP;
DEBUG GO <cr>

46

MACH2 Symbolic Debugger

* The Debugger Display
The following picture shows the display which is generated when you enter the debugger:

Assembly language Instruction
about to be executed. This Is the
first Instruction In the word GO. FORTH word about

to be executed.
Flag settings.DEBUG GO j'

00055232: MOVE.L (AS),-(A5) + DUP
PC: 00055232 SR: 0310 X.1 N-0 Z-O V-0 CO
AO: 00051154 A4: 00000000 DO: 00055232 D4: 00000008
Al: 00051152 AS: OOO1F1E6 DI: 00000007 D5: 00000007
A2: 00000000 A6: 00021100 D2: 00000003 06: 00000007
A3: 0001EA32 A7: 0002017E D3: 00000000 07: 0001EAOA

Changing the
contents of the This display shows the
AO register contents of all registers

This Is the debugger prior to the execution
prompt. It means we of DUP.
are in the debugger
and that the debugger
is awaiting a command.

Once you have the debugger prompt you can use any of the debugger commands listed
below to move around in the debugger.

0 Important Debugger Information 1!

As the debugger works, it will write data into the code area of the program being
debugged and in the MACH2 program module. This means that while the MACH2
debugger is in use, it will be generating self-modifying code. Since seif-modifying
code can have disastrous consequences in a multi-tasking, multi-user system such
as OS-9, you must make sure that when you use the MACH2 debugger, you are
the only person using MACH2 on your system.

THE DEBUGGER COMMANDS
The following pages list all of the debugger commands at your disposal.

47

MACH 2 Symbolic Debugger

0

DEBUGGER COMMANDS

An ,=expr=,

Modify or display the contents of address register n. If 'An' is followed by an expression,
the specified register's contents will be changed to the value of the expression. If 'An' is
not followed by an expression, the current contents of the specified address register will
be displayed:

, Al ecr> 51152 \ Display the contents of register Al
3 Al RA6+8<cr> \ Set the contents of register Al to the contents of

\ register A6 plus 8.

BR -caddrv' -cntb.

Used to set or display normal or counted breakpoints. If used without any of the optional
parameters, 'BR' will display the addresses of all temporary breakpoints currently set. For
counted breakpoints. 'BR' will also display a count of how many more times the breakpoint
must be hit before program execution is halted. If 'BR' is followed by an address, a breakpoint
will be set at the address. If 'BR' is followed by an address and a count, a counted breakpoint
will be set at the address. A counted breakpoint is a breakpoint which must be hit ccnt> times
before program execution will actually be suspended. Each time a counted breakpoint is hit,
the registers will be displayed but program execution will not stop until the count reaches 0.

. BR 54112 .cr2
3, BR 54120 8 ,cr>m
o DR .-ccm
54112
54120 8

CL 4addriie

Clear break points. 'CL' followed by an address will remove the breakpoint at that address.
'CL' followed by no address will remove all temporary break points.

CV EXPR

Convert expression. 'CV' must be followed by an expression. The expression may contain
any of the arithmetic operators described in the assembler section, binary(%)/octal(A)/
decimal(#)/hexadecimal($) numbers, and register operators. 'CV' will convert the expression
to its hexadecimal and decimal equivalent values.

3 CV RA6,%1010+$4E,#400,A55 -ccr2'
Hex21315 Dec:135957

48

MACH 2 Symbolic Debugger

S DEBUGGER COMMANDS (cont.)

OM .addr=, ccnt.

Display the contents of memory. If no parameters follow 'DM', 16 bytes of memory, starting
from the address last used with any debugger command, will be displayed. If an address
follows 'DM', the 16 bytes of memory starting at the address will be displayed. If an address
and a count follow 'DM', the 'count' bytes of memory starting at the address will be displayed.

A convenient way to specify a register address to 'DM' (or any other debugger command
which accepts an address) is to place an 'R' in front of the desired register symbol (i.e. use
'RAT to specify the address in register A7). To add a level of indirection, precede the 'R' with
one or more '@' signs:

3 DM RA7 ccr3 \ Display memory starting at the address in register A7.
02017E: 0006 06A4 0006 079A 0005 0544 CODE FEED 0

30 OM @RA7 10 -ccr> \ Display memory at the address located at the address in A7.
0606A4: 4EBA 0786 4EBA D610 4A92 671C 6110 0E20 N...N... J.9.a...
0606B4: 5374 6163 6B20 456D 7074 7920 2120 2B1F Stack.Empty.!.+.

On cexpr3-

Modify or display the contents of data register n. See 'An'.

ES

Exit to the OS-9 shell.

G

5 Go. Continue program execution until the next break point is encountered.

GT ADOR

'Goto'. Sets a temporary breakpoint at the address. Then, program execution is continued
until the breakpoint is reached. When the breakpoint is reached, it is automatically removed.
Useful for walking through' a program.

H

Help. Displays a summary of the available debugger commands. Optional command
parameters are places between arrows (i.e. <addr>). Required command parameters are
capitalized (i.e. ADDR).

49

MACH 2 Symbolic Debugger

S

DEBUGGER COMMANDS (cont.)

: H -cmr.

An <expr> Modify/display address register
BR <addr> <cnt> Set/display breakpoints
CL <addr> Clear breakpoint
CV EXPR Convert expression
DM <addr> <cnt> Display memory
On <expr> Modify/display data register
ES Exit to shell
G Go/run
GT ADOR Goto temporary breakpoint
IL caddr> <crt> Instruction list
PC <expr> Modify/display program counter
RX Toggle register listing
S <cnt> Single step
SB ADDR EXPR Set memory [byte]
SW ADOR EXPR Set memory (word]
SL ADDR EXPR Set memory [long]
SR <expr> Modify/display status register
SS Show parameter stack
T <cnt Trace instr. TRAP/JSR - 1
1TD Display all registers

C N V X Z Modify/display status bits

IL cadddr ccntN

Instruction list. Disassembles <cnft> instructions starting at <addr>. If no count is specified,
the 10 instructions starting at the address are disassembled. If no address or count are
specified, the 10 instructions starting at the last address used by a debugger command
are disassembled. Note that 'IL' s both a debugger command and a FORTH word and that
it is used differently in both environments.

PC ,=expr=,

Modify or display the contents of the program counter. See 'An'.

RX

Toggle register display. Toggles between a complete register display and a display of
only the current instruction.

S ccntb

Step. Execute one assembly language instruction and stop. If a count is specified, execute
"count' assembly language instructions and stop.

50

MACH 2 Symbolic Debugger

Inter facing to OS-9

Notes:

52

MACH 2 Symbolic Debugger

* EXPECT Accepts Line Editing Commands

The FORTH word EXPECT is the main word used by MACH2 as it interactively accepts
lines of user input. As the following assembly language definition shows, EXPECT
uses the I$ReadLn I/O system call and, therefore, supports the standard OS-9 line
editing commands:

CODE Expect (a n
MOVE.L (AS)÷,D1 \ length
MOVEA.L (AS)÷,AO \ buffer address
MOVEO.L #0,D0 \ I/Ochannel
OS9 ISReadLn \ read in the string
3CS oS9_ERROR \ MACH2 eror handling word
SUBQ.L #1,01 \ set up SPAN. see the SPAN
MOVE.L D1,SPAN(AS) \ glossary page.
RTS

END-CODE

KEY Does Not Accept Line Editing Commands

The FORTH word KEY is the word used by MACH2 when it takes single character input
from the user. Since KEY uses ISRead to read in single characters it does not support
the use of the OS-9 line editing commands. KEY's function is to return the ASCII code
corresponding to the input character:

CODE KEY (c)
JSR SetNoEcho \ turn echo parameter off for this terminal
CLR.L -(AS)
LEA 3(AS),AO \ ISRead will return the character on the stack
MOVEQ.L #0,D0 X use default path
MOVEO.L #1,01 \ read only one byte
OS9 ISRead \ Read I
BCS OS9_ERROR \ MACH2 eor handling word
JSR Reset-Echo \ turn echo back on for this terminal
RTS

END-CODE

The 'Set_NoEcho' and 'Reset_Echo' subroutines are shown on the following pages as
examples of changing a terninars operating characteristics. Note that although KEY will
not recognize the standard line editing command keys it will still be affected by the special
"interrupt' keys (CONTROL C and CONTROL E). The section on OS-9 signals explains
how "Interrupt" keys are processed.

55

The OS-9 Terminal Device

6

Getting/Setting Terminal Characteristics 0
The list below shows the terminal characteristics which may be changed interactively,
by using either the TMODE (see page 6-107 of the OS-9/68000 OS User's Manual) or
XMODE (see page 6-119 of the OS-9/68000 OS User's Manual) utility commands, or from
within a program by using the I$GetStt and I$SetStt (see pages 15-9 and 15-18 of the
OS-9/68000 OS Technical Manual) I/O system calls:

Letter case Duplicate last line character
Destructive backspace Pause character
Line delete Keyboard interrupt character
Echo Keyboard abort character
Automatic line feed Backspace "output* character (echo char)
End of line null count Une overflow character
End of page pause Parity code, # of stop bits & bits/char
Page length Software adjustable baud rate
Backspace input" character X-on character
Delete line character X-off character
End of record character Tab character
End of file character Tab field size
Reprint line character

TMODE is used to set/check the operating characteristics of the terminal currently in use.
Changes made with TMODE will only remain in effect until the path to the user's terminal
is closed. XMODE is used to set/check the default characteristics which will be given to all
terminal paths which are subsequently opened (XMODE actually updates the memory image
of the device descripter information for terminals). Changes made with XMODE will remain
in effect until the computer is shut down. Refer to the XMODE utility command description
on page 6-119 of the OS-9/68000 Operating System User's Manual for information on how
to permanently change terminal characteristics.

Interactively Checking a Terminal's Operating Characteristics

The following example demonstrates how TMODE may be used interactively from within
MACH2 to check the operating characteristics of the terminal currently being used by
MACH2 (if no arguments follow TMODE it will display the current terminal operating
characteristics):

$ TMODE <cr>

/term
noupc bsb nobsl echo If nul-0 nopause pag-24 bsp-08 del-18 eorOD
eof.1 B reprint.04 dup-01 psc-17 abort-03 quit-05 bsc-08 bell-07
type.00 baud.9600 xon-11 xoff-13 tabc,09 tabs.4
Ok cO>

56

The 0S-9 Terminal Device

0

The table on pages 6-107 through 6-110 of the OS.9/68000 OS Users Manual will
help decipher the MACH2 terminal characteristics returned by TMODE.

Setting a Terminal's Operating Characteristics from within a Program

The two subroutines shown below show how a terminars operating characteristics
may be altered from within a running program. These are the two subroutines used
by KEY in a previous example. Since the FORTH standard requires that KEY does
not echo its input, the subroutine 'SetNoEcho' is used to turn off echoing in the
current terminal path. After the character has been input, 'ResetEcho' is used to
turn character echo back on.

The I$SetStt I/O system call used to alter terminal characteristics allows you to change
multiple terminal characteristics at once. Typically, the process used to change a
terminal characteristic involves: 1. using ISGetStt to read in a table containing the
current terminal characteristics; 2. altering the field or fields in the table which
correspond to the characteristics you wish to change, and 3. using l$SetStt to write
the contents of the altered table of information out to the path process descriptor
for the terminal.

EQU SS_Opt 0 \ selector used with I$GetStt and I$SetStt
\ 0 system calls

CODE SetNoEcho ()
LEA -128(AT),A7 \ allocate a 128 byte buffer on the system stack
MOVEA.L A7,AO \ put the address of the start of the buffer in AO
MOVEO.L 00,D0 \ use default path
MOVEQ.L #SSOptD1 \ 'read in path descriptor options' selector
OS9 ISGetStt \ get terminal characteristics
BCS BYE-ERROR \ internal MACH2 error handling routine

MOVEA.L A7,AO \ put start addr of terminal char. table in AO
MOVE.W 4(AO),MODE(A6S record the echo and linefeed settings
CLR.W 4(AO) \ set no echo and no linofeeds
MOVEO.L #0,D0 \ use default path
MOVEQ.L #SSOpt,D1 \ 'write path descriptor options' selector
OS9 I$SetStt \ set terminal characteristics
BCS BYEERROR \ internal MACH2 error handling routine
LEA 128(A7),A7 \ de-allocate the stack space
RTS

END-CODE

57

The OS-9 Terminal Device

CODE Reaset_NoEcho ()
LEA -1 28(A7),A7 \ allocate a 128 byte buffer on the system stack
MOVEA.L A7,AO \ put the address of the start of the buffer in A0
MOVEQ.L #0,D0 \ use default path
MOVEQ.L #$S_Opt,Dl \ 'read in path descriptor options' selector
OS9 ISOetStt \ get terminal characteristics
UCS @1 \ exit if error

MOVEA.L A7,AO \ put start addr of terminal char. table in A0
MOVE.W MODE(A6),4(AO0• restore saved echo and linefeed settings
MOVEQ.L #O,DO \ use default path
MOVEO.L #SSOpt,D1 \ 'write path descriptor options' selector
OSg I$SstStt \ set terminal characteristics

@1 LEA 128(A7),A7 \ de-allocate the stack space
MOVE.W #1 ,MODE(A6) \ -1 in mode means 'echo' is not currently altered
RTS

END-CODE

0

58

The 0S-9 Terminal Device

0

0 FILES

FORTH File Handling Words

MACH2 contains two sets of file handling words. One set of words is comprised of the
file handling words built into the FORTH language (BLOCK, BUFFER, VIRTUAL,
UPDATE, SAVE-BUFFERS, EMPTY-BUFFERS, LIST, LOAD, FLUSH). Since MACH2
has been designed to edit and load text files, as opposed to block tiles, these block-
oriented FORTH file handling words have been included in MACH2 only to maintain
FORTH-83 compatibility. All of these FORTH file handling words are found in the FORTH
vocabulary. For more information on these words, refer to their individual glossary pages.

MACH2/OS-9 File Handling Words

The other set of file handling words contained in MACH2 are designed for easy interaction
with the OS-9 Random Block File Manager (RBF). These are the words which will be
discussed in detail below. All of the OS-9/MACH2 file handling words are located in the
OS-9 vocabulary.

Creating Files

The word $CREATE is used to create and open new files. The stack notation for $CREATE
is shown below:

$CREATE (path-name attrbites access-mode - path# errorcode

'path-name' should be the address of a null-terminated string which contains the pathname
to be uses to find the new file. 'attributes! is a value which determines how and by whom the
new file may be accessed in the future: it defines all the possible ways the file may be
interacted with in the future. 'access-mode' is a value which indicates the current access
permission desired; it indicates how we would currently like to interact with the file.

The table below shows how to choose the values used for the attnrbutes parameter:

Attribute Sits Set this biL. wIth ts value_ 1peP t this type of access.
0 1 owner read permit
1 2 owner write permit
0+1 3 owner read/write permit (owner update)
2 4 execute permit
3 8 public read permit
4 16 public write permit
3+4 24 public read/write permit (public update)
5 32 public execute permit
6 64 non-sharable file

59

Files

0

ModeBIits Set this 9L. with Uts valus. If you dsir this type of access.
0 1 read
1 2 write
0+1 3 read/write (update)
2 4 execute
3 8 ...
4 16 ...
3+4 24 ...
5 32
6 64 single-user

The example below shows how to use $CREATE to create a new file named 'MyFile' (which
will be located in the current directory since no additional pathname specifications were
included with the filename), which may be read from or written to by anyone and will be opened
in a read/write mode for current access:

ONLY FORTH DEFINITIONS
ALSO OS-9 \ OS-9 file words are located in the OS-9 voc.

BINARY \ put in BINARY base for readability
0000011 CONSTANT OwnerR/W \ set bits 0 and I for owner read/write access
0011000 CONSTANT PubllcR/W \ set bits 3 and 4 for public read/write access
0000011 CONSTANT R/WMede \ set bits 0 and I for read/write access mode
DECIMAL \ return to DECIMAL base

" MyFlle" 1U add i to file name address to skip length byte
OwnerR/W PublIcR/W + \ this file may have owner riw and public riw
R/WMode \ right now we want rw access
$CREATE cncr> ok <2> \ create the file, $CREATE returns 2 values

.S cCr* 3 0 *- TOP ok <2> top item is error code. second is path number

As the example shows, $CREATE will return two values on the stack. The top item will
be an error code. If the error code is 0, no error occurred. if the error code is non-zero
it is an OS-9 error number (you may want to pass the error code to the ?OS9ERROR
error handling word, described in the next section). The second item, if no error occurred,
will be a path number since $CREATE will leave the new file open. The path number is
usually required by all OS-9 file routines which operate on open files. A path number is
used to uniquely identify and locate an open file.

Opening Flles

$OPEN is used to open files. It has the following stack notation:

$OPEN (path-name access-mode - path# errorcode

60

Files

0 'path-name' should be a null-terminated string which contains the path specifications
which should be used to find the file to be opened. The 'access-mode' parameter is the
same parameter described in the $CREATE discussion. Here is an example use of $OPEN:

" Monday/Work_File" 1+ R/WMode $OPEN ccr:. ok <2>

.S <cr> 4 0 <- TOP ok <2>

The above example shows how a file named Work-File', which is located in the 'Monday'
directory, could be opened with read/write access mode perrr •sion. $OPEN returns two
values on the stack. The top value is an error code an the second value, if no error occurred,
will be the path number which uniquely identifies the open file.

Closing Files

To close a file use $CLOSE. $CLOSE expects to be passed the path number of the open
file it is to close. $CLOSE will return an error code on the parameter stack. Here is the stack
notation for $CLOSE, and an example showing how the file opened above could be closed:

$CLOSE (path# - errorcode)

4 $CLOSE .4cr3 0 ok <0>

Deleting Files

SDELETE is used to delete files. $DELETE expects to be pass the address of a null-
terminated string which contains the pathname used to locate the file to be deleted.
The user deleting the file must have non-sharable write access and the file must be closed.
The access mode is used to specify the data or execution directory (but not both) in the
absence of of a full pathlist. If the access mode specified is read, write, or update, the
current data directory is assumed. If the execute bit is set in the access mode parameter,
the current execution directory is assumed. Note that if a full pathlist is given (a full pathlist
begins with a '?), the access mode parameter is ignored. The stack notation for $DELETE
and an example of its use are shown below:

$DELETE (path-name access-mode - errorcode

" M `:lie" 1+ R/WMode $DELETE . ccr> 0 ok <C>

61

Files

0-rg

Writing Data to a File

To write data to an open file use $WRITE. $WRITE should be passed the address of the
buffer where the data to be written resides, the number of bytes which should be written,
and the path# which identifies the file to which the data should be written. SWRITE will
return two values on the stack when it has finished. The number on top of the stack will
be an error code. The second value will be the number of bytes actually written.

The file to be written to must have been opened with read/write (update) or write access
mode permission. If the data is written past the current end-of-file, the file will automatically
be expanded. The stack notation for $WRITE and an example of its use are shown below:

$WRITE (bufferaddr len path# - #byteswritten errorcode

ONLY FORTH DEFINITIONS ccr3 ok <0>
ALSO OS- ,ccm ok <0>

BINARY ccm ok .<o>
0000011 CONSTANT OwnerRFW 4cr> ok <0>
0000011 CONSTANT RJWMode 4cr3 ok <0>
DECIMAL ccr3 ok <0>

\ create a data buffer in memory and fill it with 100 asterisks
VARIABLE Data Buffer 96 VALLOT ecr, Ok <0>

OataBuffer 100 ASCII * FILL 4cr) ok <0>

\ create a fIde, ask for read/write access mode.
\ write the contents of the data buffer out to the file.
\ and close the file.
". MyFII" 1U OwnerRlW R/WMode $CREATE . -cr3 0 3 ok<0>

DataBuffer 100 3 SWRITE -cr. 0 ok <0>

3 $CLOSE -c) 0 ok<0>

\ now we will use the OS-9 'List' command from within MACH2 to
\ verify that the data was written to the file.

$ UST MyFIIe ,cr>.

ok <0>

62

Files

Other File Handling Words

OS-9 provides many other file handling words, several of which will soon be added to
the list of MACH2/OS-9 file handling words. All of the OS-9 file handling routines are
discussed on pages 15-1 through 15-26 in the OS-9/68000 Operating System
Technical Manual.

Using the OS-9 File Calls from Assembly Langua2e

The following code definition shows how the I$Read command could be used from
assembly language:

CODE $READ (buffer-address len path# - lbytesread errorcode

MOVE.L (A5)+,D0 \ get path number
MOVE.L (AS)+,D1 \ get # bytes to read
MOVEA.L (A5)+,AO \ get address of buffer where data should be put
OS9 ISRead k read the data
BCS.S @1 \ error if carry set
MOVE.L DI,-(A5) \ # byles actually read returned in D1
CLR.L -(A5) \ return 0 error code
RTS

@ 1CLR.L .(A5) \ error occurred, return 0 for #bytesread
EXT.L 0 1 \ extend the word-length error returned
MOVE.L DI,-(A5) \ place errorcode on stack
RTS

END-CODE

63

Files

ERROR HANDLING

?OS9ERROR and ERRORPATH

The words ?OS9ERROR and ERRORPATH are two built-in OS-9 error handling tools
which are located in the OS-9 vocabulary. ?OS9ERROR expects to be passed an error
code returned by an OS-9 system call. If the error code indicates that an error has occurred,
?OS9ERROR will display the error number in OS-9 format (i.e. Error number #mmm.nnn).
If no error occurred, ?OS9ERROR will do nothing. Here is the definition of ?OS9ERROR:

CODE PrlntErr (n -

MOVE.L (A5)+,D1
MOVE.L ERRORPATH(A6),DO
OS9 FSPErr
RTS

END-CODE

?OS9ERROR (errorcode -

errorcode
IF

CR
errorcode PrintErr
ABORT

THEN ;

The OS-9 system call F$PErr is the routine which actually evaluates the error code and
prints an error message if required. Note that ?OS9ERROR will consume the error code
passed to it. Here is an example of the use of ?OS9ERROR:

ALSO OS-9

DECIMAL

255 ?OS9ERROR 4cr,

Error #000:255

257 ?OS9ERROR <cr.

Error #001:001

Bits 0-7 in the value passed to F$PErr will be used for the error number on the right of the
colon. Bits 8-15 are used for the error number to the left of the colon. Error numbers
000:000 through 064:255 are reserved for the operating system.

64

Error Handling

If the path number Of an open file Is stored in ERRORPATH, ?OS9ERROR will search
the file for the error message text which corresponds to the error code. The discussion
of FSPErr on page 14-25 of the OS-9/68000 Operating System Technical Manual
describes the format an error message file must have. The error message file which
corresponds to the OS-9 system errors is called 'ErrMsg' and should be located in
your 'SYS' directory. The following example shows how you may turn on 'long error
message reporting' from within MACH2:

ONLY FORTH DEFINITIONS <cr> ok <0>
ALSO OS-9 -ccr. ok <0>
DECIMAL -ccrx ok <0>

" SYS/ErrMsg" 1+ 3 $OPEN <cr> 0 3 ok <0>

3 ERRORPATH ! ccnook <0>

\ now, type some gibberish characters after the T word
\ to generate an error message.
$;AKDF;LKJADF ,ccr>
Error #000:216 (E$PNNF) File not found.

The pathlist does not lead to any known file.

65

Error Handling

EXCEPTION HANDLING
Each OS-9 process (or task) may handle the basic 68000 exceptions privately if so
desired. The following list shows the 68000 exception errors which may be handled
privately by a task (and their corresponding offsets into the 68000 exception vector table):

Offset Exception Error Offset Exception Error

$08 Bus Error $1C TRAPV Instruction
$OC Address Error $20 Privilege Violation
$10 Illegal Instruction $28 Line 1010 Emulator
$14 Zero Divide $2C Line 1111 Emulator
$18 CHK Instruction

Handling an Exception Error

When a custom exception error handling routine is called, the 68000 registers will
contain the following information:

D7.w Exception vector offset
A 0 Program Counter (PC) value when exception occurred.
A 1 Stack pointer (SP) value when exception occurred.
A 5 User's register stack image (DO-D7/AO-A6) when

exception occurred.
A 6 Users primary global data pointer.

An exception vector is a memory location from which the 68000 processor will fetch the
address of the routine which will handle that exception. Exception vectors are always
located in a table which resides in low memory (from address $0000 to address $03FF).
The contents of the 68000 exception vectors should never be altered directly. Always use
the methods described in this section to set up an exception handling routine. The offset
from the start of the exception vector table to the exception currently being processed will
be passed to an exception handling routine in the lower word of the D7 register.

The AO register will usually contain the value which was in the program counter when
the exception occurred. The program counter value usually points to the next unexecuted
instruction, however, for bus and address error, the program counter value is unpredictable
(see page 40 of the Motorola 68000 Programmers Reference Manual, 4th Edition).

All user register values (D0-D7.AO-A6) at the time of the exception will be stacked up on
the A5 stack when the exception handler is called. The users stack pointer value at the
time of the exception will be passed to the exception handler in the Al register. This gives
the exception handling routine the users complete register image at the time of the
exception. The first action of a custom exception handling routine should be to restore
the users complete register image.

66

Exception Handling

0

Example Exception Handling Routines

Example exception error handling routines for an 'Address error' and a 'Line 1010
emulator error' are shown below. Note that for the Line 1010 error we are able to print
out information about the PC value at the time of the exception. We cannot print out
PC information for the Address error because the PC value information passed to the
exception handfir" routine will not be valid for an Address error exception. Note that
both routines restore the user's complete register set before proceeding:

======a:== Address Error =

(address-error)
CR

"Address Error"
CR
ABORT

CODE address_error
MOVEA.L A1 ,A7 \ restore user stack pointer
MOVEM.L (AS),DO-DI/AO-A6 \ restore user registers
(addresserror) \ call higher-love address error

END-CODE \ exception handling routine

========== Line 1010 Emulator === =====z===== -----=--====

(Linel100) (PC I oldbase) \ take value off stack and place
CR \ in the PC named input parameter
.. Line 1010 error at " \ print message
BASE @ -a oldbase \ save current BASE
HEX PC . Iset BASE to HEX, print PC value
oldbass BASE ! \ restore previous BASE
CR
ABORT

CODE Line1010)
MOVEA.L Al,A7 \ restore users stack pointer
MOVE.L AO,-(A7) \ save PC value on sytem stack
MOVEM.L (AS),D0-D7/Ao-A6 \ restore users registers
MOVE.L (A7)+,-(A5) \ place saved PC value on param
(Line1010) \ stack and pass to higher

END-CODE \ level exception handling routine

67

Exception Handling

O

Creating an Exception Table 4

In order to let OS-9 know about your task's custom exception handling routines, you
must create an 'exception table (service request initialization table). Each exception
error your task will handle in a custom manner should have an entry in the table. Each
entry consists of 2 words (16 bits) of data. The first word should be the exception
vector offset for the exception and the second word should contain the word-length
offset to the custom exception handling routine for the exception. The end of the
table must be marked with a word-length -1 value:

HEADER ExcpThl
DC.W $00C,Addres*eError-*-2 \ offset to AddressError routine
DC.W $028,LIne1010-1-2 \ offset to Linae 010 routine
DC.W -1 \ end of table

NOTE: In the Exception Table example found on page 14-39 of the OS-9/68000
Operating System Technical Manual a 4, rather than the 2 shown above, is subtracted
in the calculation of the word-length offset to the exception handling routine. This
discrepancy is due to current deviations between the MACH2 assembler and the OS-9
assembler in the functioning of the * assembler word.

Installing the Exception Table

Once the custom exception handling routines have been written and the exception table
has been created, the OS-9 user mode system call F$STrap must be used to install (let
OS-9 know about) the custom exception error handling routines:

CODE Install (I)
LEA ExcpTbI,A1 \ pass the exception table address in Al
MOVEO.L 0,0DO
MOVEA.L D0,AO \ use current stack if exception occurs
OS9 FSSTrap \calling F$STrap
BCS.S @1 \ if carry bit set. error occurred, return code
MOVEO.L #0,D1 \ no error occurred, return 0 error code

@1 EXT.L 01 \ extend error code. if any
MOVE.L DI,.(AS) \ place error code on stack
RTS

END-CODE

For more information on custom exception error handling refer to page 14-39 of the
OS-9/68000 Operating System Technical Manual.

68

Exception Handling

* INTER-PROCESS COMMUNICATION: SIGNALS
OS-9 processes (tasks) may communicate with each other by passing signal codes.
A signal code is a word-length (1 6-bit) value. Four signal code values have predefined
meanings:

Symbol Value Signal Meaning

S$Kill 0 System abort (unconditional)
S$Wake 1 Wake up process
S$Abort 2 Keyboard abort
S$intrpt 3 Keyboard interrupt

256-65535 User defined

An Example Signal Intercept Routine

The VectorSignar routine shown below is the signal intercept routine used by MACH2.
When this signal intercept routine is called, it will be passed the word-length signal code in
the D1 register and the A6 register will hold the address of MACH2's program data area.
Normally, an intercept routine is terminated with the FSRTE system call. However,
according to the discussion on F$1cpt (see page 14-20 of the OS-9/68000 OS Technical
Manual), the 'MOVEM.L and 'RTR' instructions may be substituted as a faster alternative.

CODE VectorSignal (-)
EXT.L D1 \ signal code is in DI.W
MOVE.L Dl,-(AS) \ place code on MACH2 stack
MOVE.L RESPONSE(A6),AO \ get address of MACH2 signal vector
JSR (AO) \ execute signal routine
MOVEM.L (A7)+,DO-07/A0-A7 \ restore registers
RTR I continue mainfine execution

END-CODE

Vector..Signar is the assembly language interface to signal reception in MACH2.
'Vector..Signal' places the signal code received on the MACH2 parameter stack so that a
higher level FORTH routine may be used to respond to the signal. After the higher level
routine has finished execution, 'Vector-Signal' takes care of 'cleaning up' after the signal.

RESPONSE

RESPONSE is a MACH2 system variable found in the OS-9 vocabulary. The RESPONSE
variable is used to hold the address of the higher level FORTH routine to be used to
respond to signal receptions. Initially, RESPONSE holds the address of the 'HandleSignal'
routine. 'Handle._Signar is the default routine used by MACH2 to respond to the four system
defined signals listed above. The 'HandleSignal' routine is shown later in this section.

69

Signals

Installing a Signal Intercept Routine 0
The F$1cpt user mode system call is used to tell OS-9 where the current process' signal
intercept routine is located. It is important to note that if a process receives a signal and
it does not have a signal Intercept routine installed, the process will be aborted. The
Vector._Signar signal intercept routine discussed previously is automatically installed
each time MACH2, or a TURNKEY application (an executable module) created by MACH2,
starts up.The CODE definition below shows the signal intercept installation routine used
to install the VectorSignar routine:

CODE Installlcpt (.)
LEA Vector_Signal,A0 \ pass address of signal intercept
OS9 F$Icpt \ routine in A0
RTS

END-CODE

F$lcpt is passed the address of the Vector Signal' routine in the AO register and the
address of the current programs data area in the A6 register. The current program's data
area address is already in the A6 register when 'lnstalklcp' is run so the set up of the A6
register is not explicitly shown.

MACH2's High Level FORTH Signal Handling Routine

'Handle._Slgnar is the FORTH routine used by MACH2 to respond to the four system-
defined signals:

Keyboeardlnterrupt () \ This routine handles
CR \ CONTROL C keyboard
. Keyboard Interrupt W o nterrups.
CR

ABORT ;

\ Standard.Signal handles signals with signal codes other
\ than 0, 1. 2. 3 by printing out a message followed by the
\ signal code itself.

Standard.Slgnal (num I oldbase)
BASE @ -3, oldbase \ save the current base
DECIMAL \ set the base to DECIMAL
CR
." Signal received: U " num \ print the signal number received
oldba"e BASE I \ restore the old base

70

Signals

0

HandleSlgnal (Id }
Id
CASE

0 OF BYE ENDOF \ handle system abort
I OF ENDOF \ this signal is never received
2 OF BYE ENDOF \ handle keyboard abort
3 OF Keyboardjnterrupt ENDOF handle keyboard interrupt
Id Standard_Slgnal \ handle user defined signal

ENOCASE

Intercept ()
(1 Handle-Signal RESPONSE \ Signal handling is vectored

through the variable
Installijept ; 'RESPONSE'.

'Intercept' is a high level version of the routine MACH2 runs upon start up to set up its
own signal intercept handling.

A Custom Signal Handling Routine

The code examples below show how a custom signal handling routine could be
written and installed. Note that once this custom routine is installed, it will supersede
the MACH2 signal handling routine used to respond to system defined signals (system
abort, keyboard interrupt, and keyboard abort). Normally, a custom signal handling
routine should also handle the four system defined signals:

ONLY FORTH DEFINITIONS
ALSO OS-9
DECIMAL

Catch Signal (code
CR
". Signal
code
CASE

300 OF ." three hundreENDOF
400 OF ." four hundredENDOF
500 OF ." five hundred ENDOF
600 OF . six hundred 'ENDOF
DROP." unknown"

ENDCASE ;

InstallSHandler ()
[1 Catch_Slgnal RESPONSE

71

Signals

0

Sending Signals

To send a signal use the F$Send user mode system call (see page 14-29 of the
OS-9/68000 OS Technical Manual). F$Send expects to be passed the intended
receiver's process ID and the signal code to send. The following example shows
how a process can send a signal to itself. Before a process may send a signal to
itself it must use the 'FetchID' routine to find its process ID number

CODE FetchlD (- n)
OS9 F$1D \ get the caller's process ID
BCS.S @1 \ if error, go to @1
EXT.L DO \ extend the word-length process ID
MOVE.L DO.-(AS) \ put process ID on parameter stack
MOVEO.L #O,DI \ put a 0 (- no eror) in D1

@1 EXT.L D I \ if an error was returned, extend it
MOVE.L DI,-(AS) \ and place it on the stack
?OS9ERROR \ ?OS9ERROR will take the error code
RTS \ off the stack, examine it. and abort

END-CODE \ if non-zero (see error handling section)

CODE Send (n -)
FetchlD \ get the process ID for this process
MOVE.L (AS)+,D0 \ take the process ID off the stack
MOVE.L (AS)÷,D1 \ take the signal code off the stack
OSO FiSend \ send the signal code to this process
BCS.S @1 \ if error, go to @I
MOVEO.L #O,DI \ assume no error (.0)

@1 EXT.L 01 \ extend errorcode, if any
MOVE.L DI,-(AS) \ place error code on stack
?OS9ERROR \ and pass it to ?OS9ERROR for examination
RTS

END-CODE

Now, after 'InstallSHandler' is used to install our custom signal handling routine, we can
try sending a signal to our process:

InstallSHandler ¢cr> \ install custom signal handling routine

400 Send ccr> \ send signal # 400 to our process
Signal four hundred ok <O>

5 Send ccr2. \ send signal # 5 to our process
Signal unknown ok <0>

72

Signals

* PROCESS PARAMETER PASSING
Each time a new process is created in 08-9 (for example, by typing the name of an
executable module from the shell) a string of parameters may be passed to the process.
For example, when MACH2 is started up you have the option of passing an additional
parameter to MACH2 which specifies the memory size which should be allocated for
the user's code space:

$ MACH2 -$45000

MACH2's first action upon start up is to parse the parameter string, if any, and look for
valid input parameters.

PARAMPTR

The MACH2 word PARAMPTR, located in the OS-9 vocabulary, is included so that
user's may incorporate process parameter passing into their own executable (TURNKEY)
modules. PARAMPTR will return the address of the null-terminated parameter input string
passed to a process when the process was started.

A Parameter Passing Example

The example on the following pages shows how to create a simple TURNKEY application
(an executable module) called 'Parser which expects to be passed one numerical input
(decimal or hexadecimal). The numerical input should be immediately preceded by a hyphen.
The first action performed by 'Scan', the highest level word in the program, is to use
PARAMPTR to get the address of the parameter string passed to 'Parser. Scan' passes
the address of the input parameter string to 'Analyze' for parsing. 'Analyze' will return a
flag, indicating whether a valid input was found, and the input value. If a valid input was
found 'Scan' will print the value out and terminate by exiting to the OS-9 shell. Otherwise,
'Scan' will print out an error message and exit to the OS-9 shell.

Additional Information

For more technical information on process parameter passing see the discussion of F$Fork
on pages 14-14 and 14-15 of the OS-9/68000 Operating System Technical Manual.
For more discussion on the format of an OS-9 command line see the discussion on pages
5-2 and 5-3 of the OS-9 Operating System Users Manual.

73

Process Parameter Passing

\,.-. . - - Parameter Parser -

ONLY FORTH DEFINITIONS
ALSO OS-9

DECIMAL

\ 'Analyze' will return a flag indicating whether the input string contains a valid
\ input, i.e. a hypen followed by a valid number. A T character may be used
\ to indicate a hexadecimal number.
\ 'Analyze' will return a true (-1) flag on top of the stack if a valid input is found.
\ A false (0) flag will be returned otherwise. The second number on the stack
\ will either be the number, if valid, or a zero.

Analyze (addr I char n I
\ - strip leading spaces --

BEGIN
addr C@ -. char
1 +3 addr
char ASCII * \ search until either a '-or a
char 0= \ null character is found
OR

UNTIL

char
IF

\ - check for the '-$4500' case
addr CO ASCII $ S
IF

HEX
ELSE

DECIMAL

THEN -1 +2 addr back up addr to point to hyphen

\ addr must point one character before the numeric portion of
\ the string. Examples:
\ -$340 -1234

addr NUMBER? \ NUMBER? leaves flag and value

ELSE \ see NUMBER? glossary page.

0 0 \ no parameter string, leave false
THEN \ flag and zero value.

74

Process Parameter Passing

0

\ Scan' is an example utility that may be used to analyze the parameter string

passed to an OS-9 executable module.

Scan I I flag num

CR
PARAM PTR Analyze
-1 flag
-3 num

flag
IF

DECIMAL
Parameter data num

ELSE
." No Input data.

THEN
CR
BYE

CR
.(TURNKEY Scan Parser

Executing the 'Parser' Example Application Module

After you have loaded the 'Parser example program into MACH2 and used TURNKEY
to create the executable 'Parser module, 'Parsee uould be used from the OS-9 Shell
as follows:

$ Parser -1234

Parameterdata : 1234

$ Parser -$2000

Parameter data : 4096

$ Parser
No input data.

7

75
Process Parameter Passing

- ---

0S-9 TRAP MODULES
Trap modules (trap handlers) are independent code modules which may be created
by any language that compiles to machine code (FORTH, assembly, C). MACH2 has
facilities for the creation of two types of trap modules: 'MACH' format trap modules and
'generic' trap modules. 'MACH' format modules are designed to be 'called' by MACH2
or a program created using MACH2. 'Generic' trap modules may be called by a program
written in any language.

Why Use Trap Modules ?

One reason is that trap modules allow sections of infrequently used code (device
initialization routines, etc.) or general purpose code (a set of functionally related routines
which may be used by many programs) to be removed from the main program to reduce
the amount of execution memory required by the program. When the code in the trap
module is needed, the main program can 'call' the trap module. The trap module will be
loaded into memory, if necessary, and executed. When the trap module has finished
execution the main program can 'unload' the trap module (remove it from memory).

Another reason is that the use of trap modules allows for parallel program development.
One programmer can work on the main program while one or more other programmers
work on trap module code.Since trap modules are independent code modules, they
may be independently and individually tested and executed.

MACH2's 'generic' format trap modules allow for parallel program development AND
multi-language program development! For example, in a large industrial control project,
the control engineers could use FORTRAN to develop their control algorithms and the
hardware engineers could use FORTH to bring up the system hardware and to write
and test the required device driver trap modules. The development of the device
drivers would not be held up by the development of the main program or vice versa
and the control engineers could perform system integration tests with tth'• device
driver trap modules at their own convenience.

Organization of This Section

The first part of this trap module discussion centers on the creation and use of 'MACH'
format trap modules. The code for an example 'MACH' format trap module is presented
and discussed. The second part of this section describes the creation and use of
'generic' format trap modules. An extensive example which demonstrates how a
'generic' trap module may be called from an OS-9 C program is presented. The MACH2
program listing for the 'generic' trap module and the OS-9 C listing for the 'main program'
which calls the trap module are both included.

Many assembly language examples have also been provided for those programmers who
wish to gain an in-depth understanding of the OS-9 user trap handler mechanism.

76

Trap Modules

0 'MACH' FORMAT TRAP MODULES

A 'MACH' format trap module is a trap module which may be called only from within
MACH2 or by an executable module (TURNKEY application) created by MACH2.
The reason for this requirement is that during execution, a 'MACH' format trap module
will assume that the A6 register points to a valid 'MACH2' data area. Since many MACH2
kernel words are accessed via a jump table located in MACH2's data area, and many
MACH2 words reference system variables located in the MACH2 variable space (which.
is also located in the MACH2 data area), this assumption allows a 'MACH' format trap
module to use any word in the MACH2 kernel. A 'MACH' trap module also assumes
that it may use the parameter stack to pass parameters between itself and the calling
program.

Creating a 'MACH' FormatTrap Module

To create a 'MACH' format trap module, use the word 'MACHMODULE7:

MACHMODULE 4maln word2. <module namez.

MACHMODULE should be used after the code to be placed in the module has been
loaded into memory. <main word> is the wordwhich will be run when the trap module is
later accessed. <module name> is the name for the module.

When MACHMODULE is executed, MACH2 takes all code in the users code area,
appends some initialization code, and writes it all out to a new trap module with the given
name. After MACHMODULE has completed execution, it will exit MACH2 and return to
the OS-9 shell. The new trap module will be located in the current execution directory.

The -maln word2'

The <main word> in the trap module will be called via a 'JSR' instruction when the trap
module is executed (described in more detail later in this section). A single selector value
will be passed to the <main word> on the parameter stack. The <main word> may or may
not return parameters to the calling program on the parameter stack. Thus, the <main word>
should have at least the following stack notation:

4maln word> (selector)

77

'MACH' Format Trap Modules

0

An Example 'MACH' Format Trap Module

The code for an example 'MACH' format trap module is Shown below. This simple
program will analyze the selector value passed to it and print the corresponding string
before returning to the calling program. After the program has been loaded,
MACHMODULE is used to turn the code into a trap module named 'NumModule':

3 CONSTANT Three
2 CONSTANT Two
I CONSTANT One

: DoThree () ." Three" CR
: DoTwo () ." Two" CR
: DoOne () ." One" CR

PrintNums is the <main word> for this trap module.
: PrlntNums (selector

CASE
One OF DoOne ENDOF
Two OF DoTwo ENDOF
Three OF DoThreeENDOF

ENDCASE ;

\ Now we wil create the trap module

MACHMOOULE PrlntNume NumModule

Assigning a Trap Module to a Trap Vector

The code in trap modules is accessed throught one of 16 software trap exception vectors
provided by the 68000 microprocessor. The table shows which trap vectors are reserved
and which trap vectors are available for use by trap modules:

Vector Number, ee

0 Used by OS-9 for system calls.
1-12 Available for trap module use.
13 Used by 'C' for I/O. Used by MACH2 for its disassembler/debugger.
14. 15 Used by the OS-9 math packages.

To access a trap module from within MACH2 you must first let MACH2, and OS-9, know
which software exception vector should be used to access the module, you must 'assign'
a trap vector number to the trap module:

5 CONSTANT NumTrap

"NumModule" 1+ NumTrap ASSIGNMODULE

78

'MACH' Format Trap Modules

ASSIGNMODULE is the MACH2 word used to assign software exception vectors to trap
modules. ASSIGNMODULE expects to be passed the address of a null-terminated
string which contains the module name and the number of the vector you wish to assign
to the trap module.

The word ' -lays a string into memory which has both a leading count byte and a trailing
null byte. Since '"' returns the address of the count byte, a* 1+' is used to index over
the count byte so that the address points directly at the start of a null-terminated string
(see the ' "glossary page).

In the example, software exception vector #5 was assigned to the newly created trap
module. The CONSTANT NumTrap was used for readability.

Calling the Trap Module

Now that a trap module has been created and assigned a software vector, the module
may be called:

: OneString (-) TCALL NumTrap,1
: TwoString () TCALL NumTrap,2
: ThreeStrlng (-) TCALL NumTrap,3

\ Now let's call the module ...

OneStrlng 'ccr2> One
Ok <0>

The MACH2 word `TCALL' is used to call trap modules. TCALL may be compiled or

used interactively for testing purposes. TCALL is used in the following format:

TCALL <vector#,.cselector3-

The word 'OneString' was used above to call the trap module assigned to vector #5
(our 'NumModule' trap module) with a selector of 1 (which caused NumModule to print
out the "One* string). The selector is the number which is passed to the trap module
on top of the stack. The selector value must be in the range ±32767.

Note that TCALL is actually a MACH2 assembler word. The definition 'OneString' above
could also have been written in assembly language:

CODE OneString (

TCALL NumTrap,1
RTS

END-CODE

79

'MACH' Format Trap Modules

Low-level 'MACH' Format Trap Module Information

The following information on 'MACH' format trap modules is for those who wish to learn
how 'MACH' format trap modules are implemented at the OS-9 system call level.

'MACH' Format Trap Initialization Code

When MACH2 creates a MACH trap module, it installs the following initialization code:

: malnword (n-) ; + module code

CODE InltModule initialization code
MOVEA.L (A7),A6 \ Line 1
MOVEQ.L #0,D0 \ Line2
MOVE.W 4(A7),D0 \ Line3
MOVE.L DO,.(AS) \ Line4
JSR malnword \ Line5
MOVEM.L (A7)+,A6-A7 \ Line6
RTS

END-CODE

When a trap handler is called, the system stack contains the following information:

+8 callers return PC (4 bytes)

+6 vector number (2 bytes)

+4 selector (2 bytes)

(A7) 90 caller's AS register (4 bytes)

The instruction in Line 3 above indexes 4 bytes into the stack frame to get the 2-byte
selector passed to the trap module by the calling program. In Line 4 the selector is
placed on the parameter stack (MACH2 uses the AS register to maintain its parameter
stack) and then in Line 5. a 'JSR' to the <main word> in the trap module is performed.

The instruction in Line 6 is used often in the OS-9 examples to reset the A6 register,
reclaim stack space (the selector and vector number space), and set up the A7 register
(to point at the callers return PC) in one operation. The action relies heavily upon an
internal characteristic of the 'MOVEM'instnjction. The source addressing mode overrides
the destination mode in register assignment. The instruction 'MOVEM.L (A7)+,A6-AT
will leave the A7 register pointing at the 'caller's return PC', regardless of the data moved
into the A7 register.

so

'MACH' Format Trap Modules

Assembly Language Definition of ASSIGNMODULE

The assembly language definition of ASSIGNMODULE is shown below. MACH2 keeps
an internal table, named (for demonstration purposes) 'MODULETABLE', of 16 4-byte
locations in memory. The sixteen locations correspond to the software exception vectors
0-15. Each location contains either a 0 (if the corresponding vector is unassigned) or the
address of the name string for the trap module assigned to the vector.

\ Allocate variable space for 16 long addresses

DECIMAL

VARIABLE MODULE-TABLE
15 4 * VALLOT

CODE ASSIGNMODULE (a n
MOVE.L (A5)+,DO
ANDI.W #$F,DO
ASL.W *2,O0 \ 4
LEA MODULE_TABLE(A6),AO
MOVE.L (A5)+,O(AO,DO.W) \ store address
RTS

END-CODE

You will see in the 'Reading a Trap Module into Memory' discussion below that if MACH2
is asked to call a module using a vector which does not have a valid name string address
in the MODULETABLE that an error condition will occur.

Reading a Trap Module Into Memory

The first time a trap module is accessed, special initialization actions must be performed.
The assembly language routine shown on the following page is used by MACH2 to handle
the first-time access of a trap module. This routine is based on 'he OS-9 example found on
page 11-4 of the OS-9/68000 Operating System Technical Manual.

The first action performed by TRAPINIT is to extract the vector number from the stack frame
of information passed on the system stack and to use the vector number to index into
MACH2's MODULETABLE to find the trap module name which has been assigned to
the vector (with the use of ASSIGNMODULE, as described earlier). If a name has not been
assigned to the vector, MACH2 will issue an error message.

81

'MACH' Format Trap Modules

Next, the OS-9 routine F$TLink (page 14-44 in the OS-9/68000 OS Technical Manual)
is used to read the trap module into memory (if it has not already been read into memory
by another program) and to initialize static storage for the trap handler if required. If a
module with the specified name is not found MACH2 will display a '<module name>
missing' error message.

At this point the module has been properly initialized. The program counter is backed
up so that it points once again to the original 'TCALL: instruction. The 'TCALL' instruction
is re-run and, since the module is now available in memory, the trap module--NOT the
TRAPINIT code--is executed.

\ Installs trap handler, and then executes the first trap call.

CODE TRAPINIT (-)

MOVEM.L DO-D1/A0-A2,-(A7) \ save registers used
MOVE.W 26(A7),D0 \ fetch vector ID
SUBI.W #$80,00 \ remove TRAP #0 offset
LEA MOOULE_TABLE(A6),AO
MOVEA.L O(AO,D0.W),AO \ string address
TST.B (AO) \ check for null string
SEQ @BadTrap

MOVE.L AO,.(A7) \ save name in case of error
LSR.W #2,D0 \ User Trap Number
MOVEQ.L #0,01 \ no optional rnemory override
OS9 FSTLInk \ read module into memory
BCS.S @ModuleMlslng

ADOQ.L #4,A7 I throw away module name
MOVEM.L (A7)÷,DO-D1/A0-A2 \ restore registers
ADDQ.L #8,A7 \ discard excess stack info

SUBO.L #4,(A7) \ back up over trap instruction
RTS \ and selector

\ A vector has not been assigned to this module.

@BadTrap \ error handling not shown

\ The specified module name was not found.

@ModuleMlsslng \ error handling not shown

END-CODE

82

"MACH Format Trap Modules

0

'GENERIC' FORMAT TRAP MODULES
A 'generic' format trap module is a trap module created by MACH2 which may be called
by a program written in any language. A 'generic' format trap module may be called
from other languages because it does not make any assumptions about the register
usage or parameter passing techniques of the calling program. Since a 'generic' trap
module cannot assume that the A6 register points to a valid MACH2 data area, it can
only use a subset of the available MACH2 kernel words. During execution, a 'generic'
format trap module can make full use of the MACH2 stacks (an initialization routine will
set them up for the module) but the stacks cannot be used to pass parameters back
to the calling program.

Words Which May Be Used In a 'Generic' Format Trap Module

The lists below contain all of the MACH2 words which may be compiled into a 'generic'
format trap module program. All of the program control structure words, all of the words
relating to local variables, and most of the arithmetic and stack manipulation words are
included in the list. These types of words are either immediate compiling words which
generate machine code when they are compiled (IF...THEN, [!,etc.), or they are MACH
words whose code is laid in line during compilation (C@, 0, -, etc.). These words are
acceptable for use in a 'generic' trap handler module program because they do not use
internal MACH2 system variables(variables are A6 dependent) and they do not
generate MACH2 kernel references (the jump table is A6 dependent). All MACH2
assembler words may also be used. Note that the MACH2 floating point words and
the MACH2/OS-9 file words are not included in the list because they would generate
jump table references when compiled.

I 2* ?DUP ELSE MAX WI
" 2+ ENOCASE MIN we
+ 2- ASS ENDOF NEGATE WHILE

! 2/ AGAIN EXECUTE NOT WEXT
*3 2DROP AND EXIT OF XOR
+LOOP 2OUP BEGIN I OR ['I

20VER BYE I' OVER A

-) 2SWAP CI IF R>R@
04 - C@ J REPEAT
O0 .3 CASE LEAVE SWAP
03. a DO LITERAL TCALL
1.+ D DROP LOOP THEN
1 - aR DUP LEXT UNTIL

83

Generic Format Trap Modules

0
A MAKEMODULE Utility Command

VERBOSE is a MACH2 system variable used to control compilation error messages.
When the VERBOSE variable contains a negative value, any compiled references
to words which are not allowed in a 'generic! trap module will be flagged during
loading:

-1 VERBOSE I 4crv,
: Test () CONVERT ; ,cnr CONVERT may not be used by MAKEMOOULE.

Since VERBOSE was holding a negative value, the compiler was watching out for compiled
references to words which are invalid in a 'generic' trap module. Note that although
CONVERT was flagged as being an invalid reference, the loading process was not aborted.

Creating a Generic Trap Module

The process of creating a generic MACH2 trap module is very similar to the process
used to create a MACH2 format MACH2 trap module. The only difference is that the
word MAKEMODULE (instead of MACHMODULE) is used to create generic MACH2
trap modules:

MAKEMODULE <mainword> <modulename>

MAKEMODULE should be used after the program to be run by the generic trap module
has been loaded into the MACH2 environment. <mainword> is the word which will be
executed when the trap module is 'called'. <modulename> is the name OS-9 will use
to identify the trap module. When MAKEMODULE is executed it will create a generic.
trap module, append some initialization code, and exit to the OS-9 shell.

84

'Generic' Format Trap Modules

0

An Example 'Generic' Trap Module

A listing of a program to be turned into a 'generic' trap module is shown below. The program
creates a device-specific driver module that simulates the polling of three analog-to-digital
devices. Since the FORTH language is especially suited for machine and device control,
the MACH2 system should be especially useful for the creation of low-level, generic, OS-9
device driver modules. On the other hand, the MACH2 system might not be as suitable for
the creation of generic I/O trap modules since none of the MACH2 I/O words are allowed in
a 'generic' trap module.

Program listing for generic trap module.

1 CONSTANT AID1 \ selector value for device 'AWD1'
2 CONSTANT A102 \ selector value for device 'A/D2'
3 CONSTANT A103 \ selector value for device 'A/D3

k These words simulate the responses of the A/D devices.
\ For demonstration purposes, constant values are returned.

ReadA/01 (- n) 123 ; \ device'A/0D always returns 123
ReadA/02 (- n) 456 ; \ device 'A/02' always returns 456
ReldA/03 (- n) 789 ; \ device "D3 always returns 789

Main' is the main word in this trap module. This trap module is simulating a driver
which takes reading from one of three analog-to-digital devices. The value read
is returned in the DO register.

Main (frame selector I data
selector check the selector...
CASE

A/DOF RsadA/O1 -3 data ENOOF and take a reading.
A/DOF ReadA/02 -, data ENDOF
A/I39F ReadA/03 -= data ENDOF
0 -3 data

ENDCASE
data frame I ; \ save the data into DO (the DO register

\ is the 'top' one in the stack frame.

Now this file may be loaded into MACH2. After the loading process has completed, use
MAKEMODULE to create the trap module which will contain this A/D simulation code:

MAKEMODULE Main ADSampler -crcn

85

"Generic' Format Trap Modules

Passing Parameters to a 'Generic' Trap Module

Parameter passing is the most important aspect of this program. The <mainword> in
a 'generic' trap handler module should have the follwing stack notation:

<mainword>. (staddramepointer selector -)

When a generic! trap handler module is called, the top item on the stack will be the selector
value passed in from the calling program. The second stack item will be the address of a
64 byte stack frame which holds the complete register image of the calling program at the
time the trap handler module call was made. The stack frame address is provided so that
if the calling program passes additional parameters to the trap module in registers, the trap
module will be able to access the register contents.

The layout of the register stack frame is shown in the diagram below. If an additional
parameter were passed in the D4 register (whose contents are located at an offset of
16 bytes into the stack frame area), the 'generic' trap module could retrieve the parameter
value by inserting the sequence 'frame 16 + @' in the <main word> definition.

The 'Generic' base A7 7 caller's return PC
Trap Module +70 vector number 10
Execution Environment +68 function code b

initial A7 .64 caller's AS register ytes
+60 A7
+56 AS
+52 AS
+48 A4
+44 A3
+40 A2
+36 Al
32 A 64

+28 D7 bytes
+24 IDS
+20 O5
+16 D4
+12 D3

+8 D2
+4 D1

"frame "- starting A7 00
2000
bytes

starting AS -

starting A3 bytes
starting D7

86

'Generic' Format Trap Modules

Returning Results from a 'Generic' Trap Handler Module

The stack frame address also provides the 'generic' trap handler module with a flexible
means of returning results to the calling program. For example, programs written in the
OS-9 C Compiler expect single function results to be returned in the DO register (see
page 3-4 of the OS-9/68000 C Compiler Users Manual). In the example listing, the
'generic' trap module returns its result in the 'DO' field, which is located at an offset of 0
from the start of the stack frame:

data frame (0 +) I

"The .o- ,rlc' Trap Module InitlallzatlonSequence

When MAKEMODULE creates a 'generic' trap module it appends initialization the
initialization code, listed below, to the module. This routine performs three actions:

1. The complete register image of the calling program is saved
on the system (A7) stack.

2. The four important MACH2 stacks (subroutine, parameter, loop, and
floating point) are set up.

3. The trap selector value and a pointer to the register stack frame are
placed on the parameter stack.

After the 'generic' trap module has completed execution, the saved stack image is
restored. It is important to note that the initialization routine assumes that the 'generic'
trap handler module has 3-4K bytes of available system stack space.

: MalnWord (n.) ; . module code

CODE InltGModule () initialization code

MOVEM.L D0-D7/AO-A7,-(A7) \ save the calling program's registers
LEA -2000(A7),A5 I allocate memory for the subroutine stack
LEA -400(AS),A3 \ allocate memory for the parameter/loop stacks
MOVE.L A3,D7 \ set up the floating point stack
SUBL.L #16,07 \ allocate memory for the floating point stack
MOVE.L A7,-(A5) \ put ptr to the register stack frame on param stack
MOVE.W 4"17(A7),-(AS) \ get selector value and place on parameter stack
CLR.W -(AS) \ dear upper word
JSR ,4malnword3 \ call the main word in the generic trap module
MOVEM.L (A7)+,D0-07/A0-A7 \ restore the calling program's registers
MOVEM.L (AT)÷,A6-A7 \ remove params passed to trap handler by OS-9
RTS \ return to calling program

END-CODE

87

'Generic' Format Trap Modules

The diagram on the previous page (not to scale) shows how the system stack is affected
by the initialization code listed above. Whenever a trap handler module is called, the stack
pointer will be in the 'initial AT position. The 10 bytes of data at the top of tha diagram
are always passed to a trap module.

The first step in the initialization process involves pushing the complete register stack
image onto the system stack. The register stack image takes up 64 bytes of stack space.
At this point the stack pointer is left pointing directly at the last register in the stack image,
the 00 register.

Next, the MACH2 stacks are set up. The parameter stack (A5) is set up to start 2000
bytes below the subroutine (A7) stack. The loop (A3) stack is set up to start 400 bytes
below the start of the parameter stack. The floating point stack (D7) starts 16 bytes below
the loop stack and grows downward.

After the MACH2 stacks have been set up, the initialization code indexes 68 bytes
from the 'starting AT position to get the word length selector value. This value,
and the current value of the system stack pointer (points right at the saved value of
the DO register), are placed on the parameter stack so that they will get passed to
the <mainword> in the 'generic' trap module.

When <mainword> has finished execution, the final two instructions in 'lnitGModule'
remove the register image and the initial parameters from the stack. This ensures that
the system stack pointer is in the proper 'base AT position (pointing right at the 'caller's
return PC') when the 'RTS' instruction is executed.

Calling a 'Generic' Trap Module from C

On the following page is a listing of a C program, named 'trapcall.c', that demonstrates
how a MACH2-generated 'generic' trap handler module may be called from C. This
program, which was written using the OS-9/68000 C Compiler, is tuned to the register
usage and parameter passing techniques used by the OS-9 C Compiler (see pages
3-3 through 3-5 of the OS-9168000 C Compiler User's Manual).

The first two lines in the program are 'include' statements. The <stdio.h> file contains
some standard C VO definitions. The most important of these definitions is the 'printf'
function which allows C programs to print messages. The <traps.c> file contains two
C routines which allow C programs to access OS-9 trap handler modules:

tllnkO Assigns/unassigns a trap handler module to a software
trap exception vector.

ttcall() Calls a trap handler module.

88

'Generic' Format Trap Modules

r FILE: trapcall.c Written in the OS-9/68000 C Compiler.
Example C program which calls the 'ADSamplee module
written in MACH2 a.nd created using MAKEMODULE.

#Include 4stdio.ho P standard C I/0 definitions
*lnclude -etraps.c2. P contains the trap handler modute accdgs

P* functions provided with MACH2

#define AIDTrap 5 P* software exception vector used to aceass
#define ModName "AIDSampler" P* the AjTJ trap han'tler module
#define ADI I P* name of the trap handler module /
#define AD2 2 P* these are the three possible selectore/
#define £0D3 3 Pwhich may be passed to the AID~ modulo

Main()

mnt al,a2,a3;

prlntf("Beginning C to MACH2 trap module linkage exampie...Wn");

printf("Linking trap module %a ... kn~n",MYodName);
TLlnk(ADTrsp,O,ModNamo);

printf("Readlng samples ... \n\n*');

al aSample(ADI);
a2zSamplo(A02);
a3nSample(AD3);

prlntf("Simuiated Anaiog/Oigltai devices read:\n");
printf("ADI a%d AO2=%d AD3z%d~n\n",a1 .a2,a3);

prIntf("Froolng trap number %d\n",AIDTrap);
TLlnk(ADTrap,O,O);

printf("End of 'TrapCair' *xample*.\n');

Sample(dovicoenum)
mnt device-num

return(TTCaII(ADTrap,devlce~num));

89

'Generic' Format Trap Modules

"The definitions of these routines will be discussed later. Five constants used in the 4
program are defined next. 'ADTrap' is the number of the software exception vector
which will be used to access the trap handler module. The Ilink' routine will be used
to perform this assignment. 'ModName' is a string constant which contains the name
of the trap handler module to be called. In this example, the 'ADSampler' trap handler
module will be called. 'ADI', 'A02', and 'AD3' are three selector values which will
be passed to the trap handler module when it is called.

The first action of the 'Main' routine in the program is to declare the three integer
variables, 'al' , 'a2' , and 'a3', which will receive the results returned by the trap handler
module. Next, the Ilink' routine is used to let OS-9 know that the program wishes to
use software exception vector #5 to access the 'ADSampler trap handler module.
Now the program can call the trap handler module. The 'Sampler' routine, which uses
the ttcalr routine to call the trap handler module (through software exception vector
#5) and to pass the module a parameter, is called three times with three different
selector values. The three values returned by the trap handler module are stored in
'al' .a2' .and 'a3' and printed out. tlink' is then used once more, this time to 'unassign'
the 'ADSampler' trap module to software exception vector #5.

The 'tllnk' Routine

The Ilink' routine is a 'glue' routine which allows a high-level C program to use the lower-
level OS-9 system call F$TLink.The tlink' routine, which uses the OS-9 C Compiler's
inline assembler, is shown below:

r Assigns/unassigns trap handler modules to software trap exception vectors. /

tllnk(trap_num,addlt_mom,mod name)
register
Int

trap_num, /" Trap number to be assigned to the trap module. "/

addit mem, 1" Additional memory to be assigned to the trap module
over and above the amount already declared for the module. "/

mod_nsme, / Address of the null-terminated name string for the trap module.
tf this is 0. or points to a 0. the trap number becomes available
for reassignment.

@ MOVE.L 04,DO trapnumber
@ MOVE.L D5,D1 additionalmemoryrequest
"@ MOVEA.LD6,AO module name pointer
"@ OS9 FSTLInk installtrapmodule
@ EXT.L 01 error code or 0 is retumed in D1.W
@ MOVE.L 01,00 return error code or O in DO.L

90
'Generic" Format Trap Modbles

0 The tlink' routine uses three register variables: traphum, addit.mem, and meod_name.
According to page 3-3 of the OS-9 C Compiler Users Manual, the OS-9 C Compiler
uses registers D4-D7, and A2-A4 for register variables. For this routine it was determined
that the first register variable declared was assigned to register D4, the second to register
D5, and the third to register D6. The first action of the tlink' routine is to set up the registers
for the F$TLink system call (described on page 14-44 of the OS-9/68000 Operating System
Technical Manual) by moving the input parameters from their register variable locations to
the registers used by the FSTLink call. The error code returned by the F$TLink call is
returned in the DO register.

The version of the Ilink' routine included on the MACH2 distribution disk contains much
more extensive error handling. The version shown has been trimmed down for
demonstration purposes.

The ttcall' Routine

The 'TRAPn' 68000 assembly language instruction is used to 'call' a trap handler module.
This code fragment shows how a trap handler module would be 'called' from assembly
language:

TRAP #5
DC.W 1

These instructions would call the trap handler module currently assigned to software
exception vector #5. The trap handler module would be passed a selector value of 1.
Since the 'TRAP' instruction is only accessible from assembly language, the ttcalr routine
was created to allow C programs to call trap handler modules:

/ Allows C programs to call a trap handler module using any software

exception vector number and any selector value.

ttcall(trap_num,selector)

register
Int trap num, /I Trap number to be assigned to the trap module. '/

selector, P The selector value which will be passed to the trap module. °/

(
@ MOVE.W #$4E75,-(A7) lay down an `RTS' instruction
@ MOVE.W DS,.(A7) lay down the selector value
@ ORI.W #$4E40,04 calculate the trap opcode value
@ MOVE.W 04,-(A7) lay down the 'TRAPn'opcode
@ JSR (A7) execute trap call by 'jumping' to the instruction
@ ADDO.L #6,A7 reclaim stack space

91

'Generic' Format Trap Modules

0

The ttcail routine also uses register variables. When the ttcalr is executed, the D4 register
will contain the users desired trap number and the D5 register will contain the selector value
the user wishes to pass to the trap handler module.

The 'ttcalr routine makes no assumptions about the software exception vector number
to be used for the trap handler module call or about the selector value which is to be
passed to the trap handler module. Both of these parameters are passed into the ltcall'
routine. In order to be this flexible, ttcalr must construct the 'TRAP" and 'DC.W' assembly
language instructions on the system stack each time it executes.

These diagrams should help explain ltcalrs actions.

ttcall(ADTrap,AD2)

constructed
Ittcall instructions system stack instructions

MOVE.W #$4E75,.(A7) addr+4 4E75 RTS

MOVE.W 05,-(A7) addr+2 2 DC.W 2

ORI.W #$4E40,D4 addr 4E45 TRAP #5
MOVE.W D4,-(A7) ad I _ 4E4ITRAP_#

The left column shows the itcalr assembly instructions, the middle column shows how
the assembly instructions affect the system stack, and the right column shows what
instructions the values on the system stack represent. After the instructions have been
constructed on the stack, they are executed and the stack is cleaned up.

Summary

Using MACH2 generated trap modules from programs written in other languages is
a three step process. First, some means of accessing the OS-9 F$TUnk system call
from within the language must be found. In the example, the OS-9 C Compiler did
not provide a high level function which allowed access to the F$TLink call, so the inline
assembler was used. Next, some means of executing a 68000 'TRAP" instruction
must be found. The OS-9 C Compiler's inline assembler was also used for this purpose
in the example program. Finally, the register usage and parameter passing methods
of the language must be determined so that the calling program and the MACH2 'generic'
trap handler module will interact successfully.

92

'Generic' Format Trap Modules

Glossary

S"#$ '(*+ , ./0 1 2 : ,>?@

"store"

Format: number address

Action: Stores the 32-bit number at the specified address.

Example The following example shows that the ! operator takes the full 32-bit

value off the stack and stores it in a 32-bit location in memory:

HEX ,:cr: ok <$0>
VARIABLE STORAGE <cr>ok <$0>

3CCD4 STORAGE ! 4cr>ok <$0> The number 3CCD4
as it appears on the
stack.

1 byte 1 byte 1 byte /1 byte

0 0 03 CC D4

lower memory - higher memory
STRG takes all four bytes (32-bits)

STORAGE from the stack and stores it

starting at the specified address.

For Assembly Larguage Proammer:

CODE I (n a -)

MOVE.L (A5)+,AO

MOVE.L (AS)+,(AO)

RTS

END-CODE

MACH

See also: @, WI, W@,Cl, CO - ~

IV emo~y
G-2 O7eao r

#$% () + , ./0-9: - ? @A-Z [J'_'aaz(fJ-

"quote"

Format: "ccC

Action: Converts the string delimited by the quotation marks to
both counted string format (length byte followed by the string
itself, the string cannot be longer than 255 characters) and
"C' string format (string followed by a null byte) and returns
the address of the counted string (the address of the length
byte). To get the address of the "C" string you must add 1 to
the address returned (to skip over the length byte).
The string is stored in the dictionary. The leading must be
followed by at least one space.

Emample The diagram shows how the string compiled by" below would
look in the dictionary:

HEX -crm- ok <$0>
"Hello" ok <$1>
-.cr> 82A04 40>

05 168 65 BC 6C 6F 0 0F

82A04:2 t lignment byte

length byte null byte

If a program uses a string several times, the string should be created upon start-up and
its address saved in a variable for future references:

VARIABLE StrlngPtr -ccr3-ok <0>

: MakeString " Reusable String" StrlngPtr I ; ccr:ok <0>

StrlngPtr 0 COUNT TYPE 4ccr> Reusable String ok <0>

To get the address of a "C" string add 1 to the address returned by

" C-string" 11+ ,cr> ok <1>

See also: ." , COUNT , TYPE

ChIaracter
G-3

* $%& ()"+ ,-. 0-9 : .> ? @A-Z A\' "a-z l-

sharp

Format: < . . >

Action: Using the number on top of the stack, c converts one digit
to ASCII and inserts it into the formatted ASCII string being
constructed in the PAD. # will always insert a digit when
it is executed. # must be used within <# and #>.

a The word $Strng takes numbers off the stack and prints them
out in a dollars and cents format, $XXX.XX:

$String (n.-) -c 0 ASCII. HOLD CS ASCIIS HOLD ft TYPE; ,ccr.- ok <0>

77693 $Strlng 4crv, $776.93 ok <0>

The first # is used to put the ones digit in the string. The second # is used to put the tens
digit into the string. The ASCII . HOLD inserts the decimal point. The #S inserts any
remaining numbers into the string in the dolars section of the formatted string. The
ASCII $ HOLD puts a dollar sign in front of the entire string.

PHONE# takes numbers off the stack and prints them out in phone number format:

: PHONE# (n-)ctC # S * S ASCII - HOLD * # 0 82. TYPE ; .crf.ok <O>

1234567 PHONE# -ccr 123-4567 ok <O,

Each # inserts one phone digit into the formatted string.

See also: -#, #S, HOLD, SIGN , Nu ber
G-4 /

g "#$& ("+, . 09 ;<a=> ? @A-Z [\]"_'a-z(I}~

ni~~ a U*Sarp-greater"

Format: <#.. (any number of formatting operators) #>

Action: Drops the number from the top of the stack (the remains of
the number which was to be converted into a formatted ASCII
string-wig be zero if all digits were used up) and sets up
the stack for TYPE by leaving the count byte (n2) and the
string address (a) on the stack.

Start a new formatted number string.

* Insert the next digit of the number being printed into
the formatted number string.

S Insert all remaining significant digits of the number
into the formatted number string.

HOLD Insert the character on the stack into the formatted
number string.

SIGN Insert a minus sign into the formatted number string
if appropriate.

* • Terminate the formatted number string. The string
in now ready for printing (it is set up for TYPE).0

See also: , #, #S , HOLD , SIGN Number
G-1

..... -n

I " () $,-&.0-9 : - > ?@A-Z[\]A_*'a-z(I-

#_ U_- n) number-out

Format: #OUT

Action: Returns the number of characters that have been typed
out on the current line. The result is only valid when the
screen is the current output device.

p In the following example #OUT is used to show that 13

characters have been output on the current line:

TEST (-) "Testing." COUNT TYPE #OUT. ; <cr3ok <0>

TEST-ccr> Testing.13 ok<0>

G-6 C 1 er

!"#$%& ' (1 * + , 0-./09 :;<-•? @A-Z []_"-ll

•~ #s
sharp-s"

Format: . #S #>

Action: Keeps converting digits from the number on top of the stack
to ASCII and inserting them into the formatted string being
constructed until tWe number on top of the stack is zero. #S
will always produce at least one digit, even if the number on
top of the stack is initially zero (in which case #S will
produce a 0 and terminate). #S must be used within <# and #>.

E.xaml.DIL #S is used in the definition of U.. U. takes a number from the
stack and prints it in its entirety as an unsigned number:

U. (n-) c* #S #" TYPE SPACE ; cCfr.ok <0>

1234567 <cr> 1234567 ok <0>

The #S continually takes digits from the number on top of the stack and inserts them in
the formatted string being constructed until the number on top of the stack is reduced
to zero.

The definition of #S is:

:#S

BEGIN

* (Convert one digit from the number on top of the stack
to an ASCII character and insert it in the formatted
string being constructed.)

DUP (Has the number on top of the stack been reduced to

0 = zero- indicating that there are no digits left to convert- ?)

UNTIL (If so, leave #S.)

See also: ,# , # , HOLD , SIGN , #r

N r

'#$ (+, .0 1 2 ;< > ? @

number-t-i-b

Format: #TIB

Action: Returns the address of the system variable that contains the
number of characters currently in the terminal input buffer.
WORD uses #TIB as it parses a line in the text input buffer to
determine when it has reached the end of the buffer. BLK,
>IN, #TIB, and TIB are the four system variables responsible for
maintaining control of the input stream.

gmpl QUERY is the word FORTH uses to get its terminal input.
Execution of QUERY terminates when either a carnage
return is received or when the maximum capacity of the TIB
has been reached (the TIB can hold up to 72 characters).
When QUERY terminates it will put the number of characters
it received into #TIB :

#TIB @ .crN 8 ok <0> (The 8 indicates that 8 characters were received
6• A during the last execution of QUERY-assuming

that a carnage return was hit immediately after
T78 the was typed.)

6
5

4 0
3

2

See also: BLK ,TIB, IN ,WORD

Sysle nI ocal
G-8 V iabre

0

I'#$%&(+ 0,-./0-9 <-> ?@A-Z [\]" "a-z(I})

* dollar-sign

Format: $ <ccommand line>

Action: Used to interactively execute OS-9 utility commands.
The command line should follow $ and be terminated
by a carnage return.

ExamILe To interactively check the amount of available, unused

memory you can use the OS-9 utility command MFREE:

$ mfree ccr2

Current total free RAM: 203.75 K-bytes
ok <0>

OS-9 Note: To execute OS-9 utility commands MACH2 creates a child
process (using F$Fork) and has the child process execute
the command. MACH2 then deactivates itself (using FSWait)
until the child process terminates execution.

See also: TCALL

G-9 I

#$%&' ()+ 0-.-9::<- > ?@A-Z[\]" "a-z(I}

Stick"

Format: <name>

Action: RetrMs the address of the executable code for the <name>
which follows it in the current input stream. 'searches for
<name> using the current dictionary search order.
If <name> is found, ' leaves the parameter field address for the
word on the stack. If <name> is not found, an error message is
issued.

'should only be used interactively. Use r] inside of colon
definitions.

E e 'may be used with EXECUTE. EXECUTE will execute
the code starting at the address passed to it:

3 O DUP EXECUTE . . <cr 3 3 ok <0>

0

See also: [l , FIND , EXECUTE Co pflion
G-1 O

0

! "#$& '()" + - /0-9 : .•? @A-Z [\]A_ "a-zI}

"tick-equal"

Format: = <name>
Action: Tries to find <name> using the current dictionary search.

If <name> is found, '. returns first <name>'s parameter
field address (al), link field address (a2), and a false (0)
flag. If <name> is not found, '. returns the address
of a string containing the name and a true (non-zero) flag.

Examial DUP will be found in the current search order:

ONLY FORTH <cr. ok <0>
HEX ccr3.ok <$0>
"-= DUP <cr> ok <$3>

.S 4cr> 79F3A 17A9E 0 ok <$3>

JUNK will not be found :
1= JUNK <cr. ok <$2>

.S <cr> 18OA0 1 <- TOP ok <$2>

See also: ,f[,FIND

Co 'pilaion
G-1 1 orc

" #$%&) ,-./0-9: < ?@A-Z[\]_ a-zj}~

(" right-paren 0
Format: (.-.comments...

Action: Begins a comment. All words between the left
paren and the corresponding right paren will be
ignored. '(' must be followed by at least one space.
Nested parentheses are accepted.

Example: The following definition contains several uses of "(" for comments:

LF-FlIter (address length -
length 0 DO (step through entire string)

address I + C@ (get a character)
7F AND (throw away the 8th bit)
address I + Cl (store the aftered character)

address I + C@ A = (check for linefeeds)
IF

SP address I + C! (replace linefeeds with carriage returns)
THEN

LOOP
address length TYPE (eventually we will type the string out ...)

Notice that the last line contains nested parentheses.

The word \ may be used for commenting out a single line. (may be used to
comment out any number of lines.

See also: .(, F- _
FIORT A

G-12 Tool

0

! " #$%&' () * +, - ./ 0-9:: < - > ? @A-Z [\]A_'a-zI

S* (nl n2 - nQ•
""ntimes"

Format: nM n2

Action: Multiplies nl~n2, leaves 32-bit result on top of the stack.

Example% 4 5 * ccr> ok <1>

<cr>20ok <0>

5 20

S" also: UM*, 2%, /, /MOD

Ar
G-13 0 e rao

!'$&')+,- /0-9:; ?@A-Z[(\]A_ 'a-z(I}~

S(nl n2 n3 - n4) 0
"star-slash-

Format: n1 n2 n3 "

Action: Multiplies nl*n2 to get a 64-bit result. Then divides by n3
to produce a 32-bit result.

S1000000 4 8 */ .ccrzok <0>

-<cr=, 500000 Ok <0>

80 0500000

1o00000 -0 -

See also: , /, /MOD

Ar thm
G-14 4 rw

'#$ (+, .0 1 2 : > ?

O ~*/M OD (nl n2 n3l - n4 n5)
"star-slash-rmod"

Format: ni n2 n3 */MOD

Action: Multiplies, then divides - (nl~n2)/n3 - using a 64-bit
intermediate result. Leaves the 32-bit quotient on top of
the stack and the 32-bit remainder immediately below the
quotient.

E.IJD.D.l. 10000 5 20000 */MOO ,cr> ok <2>

.S <crp 10000 2 <- TOP ok <2>

5 0 10000

10000

0

See also: /MOD, I, MOD

Ar th Ic
G-is 0 e ra r

+ plus"

Format: nl n2 +

Action: Adds. Replaces the two numbers on top of the stack
with their sum.

Examl 3 5 + ccrok <1>

For Assembly Lanauaae Pmrrammers:

CODE + (n1 n2 - n3)

MOVE.L (A5)+,DO

ADD.L DO,(A5)

RTS

END-CODE

MACH

See also: 1U,2+ , D+ Ari mJic
G-16 0 r~eratr

#$%&' () +,-. /0-9:; < > ?@A-Z [\]A_ "a-z{I

"" plus-store

Format: number address +!

Action: Adds the 32-bit value to the contents of the specified
address.

p The following example shows that the +! operator takes the
32-bit value from the stack and adds it to the 32-bit value
stored at the specifed address:

HEX -ccr> ok <$0>

VARIABLE STORAGE -ccr> ok <$0>

1 STORAGE ! <Nr> ok <$G> (Put a I into STORAGE)

7 STORAGE +! -crm ok <$0> This is how the 7
looks on the stack.

I byte 1 byte I byte /I byte

00 0 0 00 07

lower memory.> higher memory
/ +! ýtook the 7 on top of the

STORAGE stack and added it to the 1

For Assembly Language Programmers7 stored in the STORAGEo b variable. Every number

CODE +! (n a -) involved was treated as a
32-bit value.

MOVE.L (AS)+,AO

MOVE.L (AS)+,D1

ADD.L D1,(A0)

RTS

END-CODE MACH

See also: !,@,W!,W@,C!,C@ Nemoy
G-1 7 r

1 #$%&' () * +,-/ 0-9 : .>? @A-Z [\]A_' a-z(I

+ > nj-) "plus-to"

Format: ni +> <name of local variable>

Action: Adds the number on top of the stack to the local variable
specified by name.

Exampl We will use '+>' in this example to help sum the numbers
from 0 - 9:

TENSUM{ Sum - sum
0 -3, sum
10 0 DO

I +2. sum
LOOP
sum ; ok<0>

TENSUM •cr> 45 ok<0>

See also: -=,A,{ Sys em/ oc
G-18 al

V riabtC

!"#$%& ')*+ 0-9 : ; .> ? @A-Z [\]A_ "a-z{I}~+L O (n -)
"plus-loop"

Format: limit index
DO

(code to be executed each time through loop)
increment value
+LOOP

Action: +LOOP is used when incrementing the loop index by a
number other than one is desired.
+LOOP expects to find a limit and index on the return stack
and the desired incrementing value on the parameter
stack. Each time +LOOP is executed it adds the desired
increment to the loop index value and compares the
new index value to the loop limit. If a positive increment
value is specified, the loop will continue to be executed
until the index value is greater than or equal to the limit
value. If a negative increment value is specified, the
loop will continue to be executed until the index is less
than or equal to the limit. When the condition for loop
termination has been reached, +LOOP will remove the limit
and index from the return stack and allow program execution
to continue on to the code which follows the +LOOP.

ExamDl STEPUP uses a positive loop index with +LOOP:

STEP-UP
30 0 00* I.

+LOOP ; <cm-ok <0>

STEP-UP <cr>0 5 10 15 20 25ok <0>

STEP-DOWN uses a negative loop index with +LOOP:

STEP-DOWN
-10 0 DO

I.
-2
+LOOP ; ccr% ok <0>

STEP-DOWN -cr> 0 -2 -4 -6 -8 -10 ok <0>

Se Also: DO ,LOOP ,I ,J P mG-1 o rontr I1Stu re

O c

&() ,- /0-9:; > ?@A-Z[\]A_' a-z(I)

Format: 32-bit-value

Action: Lays the 32-bit number in the dictionary starting at the next
available memory location in the dictionary. , will first check
to make sure it is on a word boundary and adjust the HERE
pointer if necessary. The pointer to the next available
dictionary location, the HERE pointer, is incremented by 4
bytes.

n In the following example, CREATE is used to make a
dictionary entry for TABLE. Then, , is used to store
four 32-bit values starting at the parameter field address
at TABLE:

CREATE TABLE -cri, ok <0>
10 , 100 , 1000 , 10000 , ccrflok <0>

TABLE @ . -crC10 ok <0>

TABLE 12 + @ . iCr.10000 ok <0>

For Advanced Proarammers:
An important fact to notice in the above example is that CREATE creates the
dictionary entry in the area where the names are stored (in the names space)
while ',' stores values in the area where the executable code for the dictionary
entries is kept (in the code space).

See also: W, , C, , ALLOT, HERE

Com !on
G-20 Nor

#$&()'+ ,-.O0-9 <- ? @A-Z[\]Jaz(I}~
e nl n2- n3)

minus

Format: nI n2 -

Action: Subtracts n1 -n2 and leaves the result on top of the stack.

Mpl 100 35 - <cro ok <1>
Sccr3, 65 ok <0>

10

For Assemblv La0guage Programmers:

CODE- (nI n2 -n3)

MOVE.L (A5)+,DO

SUB.L D0,(A5)

RTS

END-CODE

MACH

See also: 1. , 2-

0 Ar aticG-21Opertor

!'#$&'()+, /0-9: - ?@A-Z [\]A_'-{}

=~ > (.--*) save-to" 0
Format: number -> <name>

Action: Stores the number on top of the stack into the specified local
variable name or named input parameter.

Examn~lem

Local variables could be used to solve this equation for any specified X, Y combination:
(X*Y)+(X-Y)-N.

EQUATIONI (X Y I Xl YI -N
XY" -. XI
X Y- -2 YI
XI Y1 + ; <crmok <0>

10 5 EQUATION1 . ,cr>55 ok <0>

The contents of a local variable or named input rprameter are put on the stack by
typing their name. Values are stored in a local variable or named input parameter
by using the -> operator.

X and Y are named input parameters. They require a value from the stack on
input.

X1 and Yi are local variables. They are used for temporary storage.

N is a comment, indicating stack notation.

See also: +> , A , { , RECURSIVE

Sys• em/L ocal
G-22 V eriabe

0

#$%& () • , .10-9:;< - > ? @A-Z [\]AAa-z(f

-TRAILING (.a n. a n .2).
* minus-trailing"

Format: string-address original-length -TRAILING

Action: Reduces the character count of a string by eliminating any
trailing spaces. Expects on the stack the length in bytes and
address of the string. Leaves the address of the string and
the new reduced length of the string.

Exarnle
VARIABLE STRING 36 VALLOT -cr: ok <0>

STRING 40 EXPECT ccr., string with trailing spaces <cr ok <0>

(10 spaces)

STRING 40 TYPE <ccr>. string with trailing spaces ok <0>

(spaces still included in string)

STRING 40 -TRAILING TYPE rcr3- string with trailing spaces ok <0:.

(string count has been reduced to eliminate trailing spaces)

See also: TYPE , COUNT

h raG-23 1/0

#$%&' + -. /0-9: <- A?@ Z [\]A a-zU.}~

""Cdot 0
Format: n

Action: Prints the signed number on top of the stack on the screen
followed by one space. . checks the sign bit (bit 31) of the
number on the stack to determine if the minus sign should
be printed.

3 • ccr 3 ok <0>

-3 . ccr> -3 ok <0>

U. . on the other hand, treats all numbers as unsigned numbers:

HEX .gcr> ok <$0>

.3 U. <cr>- FFFFFFFD ok <$0>

The definition of . is:

: . (n -) DUP ABS <# #S SIGN 43 TYPE SPACE ; ccr> ok <0>

See also: U. , SIGN

m r
G-241/

#$%& () + ./0-9: < > ? @A-Z [\]_'a-z(i}-

"dot-quote -

Format: . ccc"

Action: Used inside of a colon definition to compile a string which
will be typed out at execution time. The .' must have a space
after it. The final * is not included in character string. A
string may be a maximum of 255 characters in length.

.(should be used if a string is to be typed out interactively.

Exampl@ : HELLO ." Hello !" ; <cr3 ok

HELLO <cr> Hello! ok

0

See also: .1 ,

Ch4raracter
G-25 1/0.

!'#%&')°+-.0-9::<-> ?@A-Z [\]^ A-z_

"dot-paren

Format: (...ccc...

Action: Immediate word which types the character string
delimited by the parentheses out to the current
output device. When used inside of a colon
definition the string will be printed out during
compile time. When executed immediately the
string will be typed out immediately. The.(must
be followed by a space.

ExaMR1a4 .(is often used to print out messages to indicate what
part of a program is currently being compiled. For example,
the following is a listing of the program file 'INIT-TABLES.

\ This Is the file named 'INIT-TABLES'.

CR
.(Initializing sine table.

INIT-SINE-TABLE

CR
.(Initializing cosine table.

INIT-COSINE-TABLE

CR
.(Initializing log table.

INIT-LOG-TABLE ;

* The .(messages imbedded in the 'INIT-TABLES' file are printed out when 'INIT-TABLES'
is loaded:

INCLUDE" INIT-TABLES" ,=cr>
Initializing sine table.
Initializing cosine table.
Initializing log table. ok <0>

See also:

C laracer
G-26 1/0

0

#$%& () +,.- /0-9:: < - > ? @A-Z [\]^_'a-z{I)-

Sn2 -)dot-r"

Format: number-to-be-printed field-width R

Action: Prints the signed number, right-justified in a field with the
specified width. If the number is wider than the field, no
leading blanks will be printed.

Example
TWO-FIELDS CR

2345 10 .R CR
23 10 .R CR ; 4cr> ok <0>

TWO-FIELDS <crv

f2345

6 spaces

23 ok 40>

8 spaces

Se also: , U.

G-27 N1/ r

0

! "#$% ') •+. . /0-9 : .> ? @A-7 [\]A_* a-z{I1)-

dot-s

Format: . S
Action: Displays the items on the parameter stack without

destroying the contents of the stack. The number on
top of the stack will be the rightmost number displayed
on the screen.

Exape 10 20 30 40 50 60 70 <cr> ok <7>

.S <cr> 10 20 30 40 50 60 70 <- TOP ok <7>

f70

60

5 0

40

30-0020
01

See also: DEPTH.

G-28 Tool

!'$% '('÷-.0-9: < > ?@A-Z [\]A_ "a-zI}

j n2.a n3"divide

Format: ni n2 /

Action: Divides n1/n2. Quotient is an 32-bit result rounded
towards zero.

Example, In the first example the division works out evenly -

50 5 / ccrzok <1>

<cr> 10 ok <0>

50

In this example, the division does not work out evenly -

25 8 / <ccr:ok <1>
<cr> 3 ok <0>

See also: 2/ , /MOD ,'/, '/MOD , MOO

Ar -htic
G-29 O t r

#$%&() .0-9:; > ? @A-Z [\]J_'a-z{I}-
.•_ (ln2 - n3 n4). ed

/M O D 1 n2 n3 Mslash-rood"

Format: ni n2 /MOD

Action: Divides nl/n2, leaving the 32-bit quotient on top of the stack
and 32-bit remainder immediately below the quotient.

Examil 17 4 /MOD cr:. ok <2>

.S ccrb I 4 <- TOP ok <0>

4 4

Seo also: MOD , I

Ar h Ic
G-30 0 *erato~r

!"#$%&,) + ,-./0-9 :;<->?@A-Z [\]^_" a-z(I}-

"zero-less-than "

Format: ni 0<

Action: Returns a true flag it n is less than 0 (if n is negative).

Exampl 4 0- ccr> ok <1>
<cr> 0 ok <0>

-2 0< <cr:ok <1>
*4cr¢- -I ok <0>

0 For Assembly Lanaua Programmers:

CODE 0c (n - 1)

MOVEO.L #O,DO
TST.L (A5)+
BGE.S @1
MOVEQ.L #-1.,DO

@1 MOVE.L D0,-(AS)
RTS

END-CODE
MACH

So* also: 031 , 0=

Comr~paris on
G-31 Op r

0

!"#$%&' 0) + ,-/0-9 :;<-> ? @A-Z [\]"_'a-z{l}-

"zero-equal0

Format: n 0.

Action: Returns a true flag if the number on top of the stack is
a zero or a false flag if the number is non-zero.

5 0= ccr)ok <1> 0 0= <cr> ok <1>

Sccr. 0 ok <0> ccr> ok -1 <0>

For Assembly Lanruaae Pmramrmers:

CODE On (n f)

MOVEO.L #O,DO
TST.L (AS)+
BNE.S @a
MOVEQ.L #-1,DO

@1 MOVE.L DO,-(A5)
RTS

END-CODE
MACH

Seo also: 0:, 03.

Cor ipari son
G-32 0 Dr

0

'#$ (+.-.0 1 2 :< > ? @

• O> (n-f),
"zero-greater-than

Format: n 0>

Action: Returns a true flag if n is greater than 0 (if n is
positive)

Example@

8 0. ccr. ok <1> -2 0> <crv Ok <1>

ccri -1 ok <0> <cr, 0 ok <0>

For Assembly Language Programmers-

CODE 03 (n - f)

MOVEQ.L #0,DO
TST.L (A5)+
BLE.S @1
MOVEQ.L #-1,DO

@1 MOVE.L D0,-(AS)
RTS

END-CODE
MACH

See also: 0 O, 0. Comparison
G-33 O r

0

! '#$%& '() *÷,- ./ 0-9: <->?@A-Z [\]A_ *"a-z 1)~

+ (r - n2 one-plus- 0
Format: n 1+

Action: Adds one to the number on top of the stack.

ExamR.C 3 1+ -ccr> ok <1>

ccrz-4ok <0>

For Assembly Larouaae Prorarmmers:

CODE 1+ (nI -n2)

ADDO.L #1,(A5)

RTS

END-CODE

MACH

S" also: 1-, +, 2+

Ar : "tic
G-34 O) r

0

! "#$& '()" +, /0-9 :;<-•?@A-Z [\]A_ "a-z(I)
Q 1" (~n1 - n2) ,

"one-minus

Format: n 1-

Action: Subtracts one from the number on top of the stack.

Examle: 10 1- <cr> ok <1>

<cr> 9ok <0>

109

For Assembly Lanauage Proarammers:

CODE 1. (ni - n2)

SUBQ.L *1,(A5)

RTS

END-CODE

MACH

See also: 1+ , ,2-

Ar 'th ic
G-35 O)e r

0

'#$%&') +,.0-9 ;.? @A-Z [\]A_ 'a-zI~

2(- n2) two-times0

Format: number 2"

Action: Multiplies the number on top of the stack by two.

Ex•mple., 6 2* <cr> ok <1>

ccrN 12 Ok <0>

6 DUP BINARY . cm, 110 ok <%l>

2* .cr.N 1100 ok <%0>

For Assembly Language Proarnmmers*

CODE 2' (ni - n2))

MOVE.L (A5),D0
ADD.L DO,(AS)
RTS

END-CODE
MACH

Se also: 2/, , /, 2+, 2-, BINARY, DECIMAL

Ar
G-36 0~ j e rao

!"#$%& ' ()"+,-/ 0-9 : ;<=> ? @A-Z [\]I'_ a-z{I}~

ni -j n2) -two-plus

Format: n 2+

Action: Adds two to the number on top of the stack.

Exampl 7 2+ <cr> ok <1>

-ccr> 9ok <1>

For Assembly Languaae Prnarammers:

0 CODE 2+ (ni - n2)

ADDQ.L #2,(A5)

RTS

END-CODE

MACH

See also: 2- , 1+

Ar 'th -ic
G-37 r

0

! "#$% ') "+, . /0-9 :;< => ? @A-Z (\]A_a-l~

2- (n1 - n2,)
"two-minus0

Format: n 2-

Action: Subtracts two from the number on top of the stack.

ExmJL]J 5 2- 4Cr=, Ok <1>

<cr2, 3 ok <0>

For Assembly Lannuaae Proarammers-

CODE 2- (ni - n2))

SUBQ.L #2,(AS)

RTS

END-CODE

MACH

See also: 2+ , 2" , 1-

Ar t
G-38 0 erJo r

'#$%& ()+ > /?- :< @A-Z [\]^ 'a-z{I}~

e2/ (nl - n2)
"" two-divide"

Format: n 2/

Action: Divides the number on top of the staCK by two by
arithmetically shifting the number right one bit.
Returns integer result rounded towards zero.

Example: 4 2/ ccr> ok <1>
< cr> 2 Ok <0>

5 21 -crook <1>

. ccrz- 2 ok <0>

For Assembly Lanauage Proarammers:

CODE 2/ (ni - n2)

MOVE.L (A5),D0

ASR.L #1,100

MOVE.L D0,(A5)

RTS

END-CODE

MACH

See also: 2+, 2-," Arihme ic
G-39 0 ieratr

#S%& ' () ", + o.0-9: ; > ? @A-Z [\]A_'a-z(I}~

2D(nl n2-)_________
"" two-drop

Format: nI n2 2DROP

Action: Removes two numbers from the top of the parameter stack.

mpl 30 40 2DROP <cr. ok <0>

400

For Assembly Lanauage Programmers:

CODE 2DROP (nI n2 -

ADDO.L #8,A5

RTS

END-CODE

MACH

See also: DROP , 2SWAP , 2OVER , 2DUP

RtacN
G-40 Mari 1 tion

0

"#$%&'() +/ 0-9 :;. ? @ A-Z [\]_'a-z(l)-

S2DUP (nj n2 n 2- nl n2tnlwn-d)
- two-dupe"

Format: ni n2 2DUP

Action: Duplicates the two single-length (32-bit) numbers
on top of the parameter stack.

p 30 40 20UP <crzok <4>

d40

403
t30407

30

O For Assembly Lanauage Programmers:

CODE 2DUP (ni n2 - ni n2 nI n2

MOVE.L 4(A5),-(A5)

MOVE.L 4(AS),-(A5)

RTS

END-CODE

MACH

See also: DUP , 2SWAP , 2OVER , 2DROP

RtacN
G-41 Mar tui ion

0

! "#$%&'()'*+, - ./0-9 : ;<- > ?@A-Z [\]*_'a.z(I}~

2_0__V FR.. •(n! n2 n3 n4 - nl n2 n3•n4n1 n2)

Format: ni n2 n3 n4 20VER

Action: Puts a copy of the second pair of numbers on the stack
on top of the stack.

ExamalL 20 40 30 50 2OVER cr3. ok <6>

.S 4cr> 20 40 30 50 20 40 ok c6>

See also: OVER , 2SWAP , 20UP , 2DROP

G-42 Mar ipui tion

I " #$%&'() * +. -. / 0-9 : ; < > ? @A-Z [\]A_ "az{I-

2S..W A P .. _ (nln2 n3 n4 - n3 n4 nln)
"two-swap"

Format: ni n2 n3 n4 2SWAP

Action: Switches the top two pairs of numbers on the parameter stack.

EumDl 30 40 50 60 2SWAP <cr> ok <4>

560/ 40

5003
40 60

-00
30 50

A high-level definition of 2SWAP is:

2SWAP (nI n2 n3 n4 - n3 n4 ni n2)
3 ROLL 3 ROLL ; %crN ok <0>

See also: SWAP, 2DUP, 2DROP, 2OVER

G-43 Mari I tion

0

-'#$%&() •-/0-9: < > ?@A-Z[\]"_'a-z{lI}~

.0
Format: : <name> (contents of colon definition)

Action: Defining word used to create new dictionary entries. The
compile-time action of : involves creating a new dictionary
entry using <name>, putting the system into the compilation
state, and setting the smudge bit of the new definition so
the definition will not be visible until it is completed.
RECURSIVE is used when a definition needs to reference
itself.

p A colon definition may be as simple as this definition (which
does nothing):

: NOTHING ; ok <0>

Or it may contain a series of other FORTH words:

: GREETINGS
BEGIN

." Hello I"
CR
?TERMINAL

UNTIL
ok <0>

To determine to which vocabulary a new definition will be appended, use ORDER. 0
In the following example, the results of ORDER indicate that currently, the ASSEMBLER
vocabulary is searched first, and then the FORTH vocabulary. Any new definitions
will be appended to the FORTH vocabulary:

ONLY FORTH DEFINITIONS <cr> ok <0>
ALSO ASSEMBLER <cr> ok <0>
ORDER -ccr>
Search Order : ASSEMBLER FORTH
Definitiions : FORTH
ok <0>

See also: ; , EXIT, STATE , RECURSIVE

D finin~g
G-44 or

0

'#$%&'(' 1-. 0-9 : <-> ? @A-Z [\]A_ 'a-zjj)~

'semi-colon"

Format: <name> (contents of colon definition)

Action: Immediate word which compiles the run-time code for exit-an
RTS, at the end of the new colon definition. ; then clears
the smudge bit so that the word may be found in dictionary
searches and puts the system back into the execution state.

0

See also: : , EXIT

CO ion
G-45 ort

!•#$%& +(,- 0-9 ::<=•? @A-Z [\14_ "a-z{I)-

"semi-colon-code

Format: name

CREATE ... compiling behavior...
;CODE ...assembly language run-time behavior...

END-CODE

Action: Used in the definition of a new defining word. :CODE is
similar to DOES> except that it allows the run-time code to
be expressed in assembly language. During compilation
of the defining word ;CODE adds the ASSEMBLER to the
search order. During the run-time of the daughter word
;CODE will leave the parameter field address on the
subroutine stack. When :CODE is used to define run-time
behavior, the defining word must end with an END-CODE.

See also: DOES, , END-CODE Co p ion
G-46

!' $ %& () +, /0-9 :: - A-Z[(\]A_ .a-z(i}

0 <: (nl n2._ f)
"less-than

Format: ni n2 <

Action: Compares the two numbers on top of the stack. Returns
a true flag if nI is less than n2, and a false flag if ni is
not less than n2.

4 8 c <ccN ok <1> 4 4 - ,=cr> ok <1>

<cr> -1 ok <0> 4<<C 0 ok <0>

-cm-r1••"r ok <0>4 24 c~o 1

For Assembly Laoruaae Proarammers:

CODE c (nI n2 - f

MOVEQ.L #O,D0

CMPM.L (AS)+,(A5)+

BGE.S @1

MOVEO.L #-1,00

@1 MOVE.L D0,-(AS)

RTS

END-CODE

MACH

See also: C, = Comon
G-47 O raj r

0

#$%& +, ./0-9 < ? @A-Z [\]A_ "a-z

"bracket-sharp

Format: n <# (any number of formatting operators) #>

Action: Signifies the beginning of the binary-number to formatted-
ASCII-string conversion process. <# sets up a pointer
to point to the memory location where the first character
(the right-most character) in the formatted ASCII string will
be placed. The number to be converted should be on top of the
stack since any succeeding formatting operators (#, #S,
HOLD , SIGN , #>) perform their operations on the number
on top of the stack.

UmDIL DATE# prints the number on top of the stack

out in a date format, month/day/year :

D DATE# (n-) * *#ASCII/ HOLDD*ASCII/ HOLD## * t3 TYPE ; ýcr. ok <O>

100961 DATE# ccrw 10/09/61 ok <0>

The PAD is the area used to construct the formatted ASCII string. The first character,
the right-most digit, is placed in the last byte position in the PAD. A formatted string
may contain up to 84 characters, which is the capacity of the PAD.

0 bytes 84 bytes

Beginning of the PAD. This is where the first ASCII character
in the formatted string will be placed.

See also: *, #S HOLD, SIGN, N b
G-48 1/0

S" $% '(" , .+ 0-9 :;< > • A-Z [\]A_ " a-z{}

n not-equal"

Format: nl n2 <>

Action: Compares the two numbers on top of the stack. Returns
a true flag if ni is not equal to n2, and a false flag if nl is
equal to n2.

Example

4 8 <3 ccrz, ok <1> 4 4 <2> ccr. ok <1>

ccr3-1 ok <0> <cr:, 0 ok <0>

For Assembly Larnuage Programmers:

CODE -c. (ni n2 f

MOVEO.L #0,00

CMPM.L (AS)+,(AS)+

BEO.S @1

MOVEQ.L 0-1 ,DO

@1 MOVE.L D0,-(A5)

RTS

END-CODE

MACH

See also: 3 C a rison
G-49 O ror

= " #$%& +. ./ 0-9 : > ? @A-Z [\'_ "a.z(-

= (ni n2 - I)
"equal

Format: nI n2 n

Action: Compares the two numbers on top of the stack. Returns
a true flag if they are equal or a false flag if they are not
equal.

5 5 = ccrzok <1> 5 6 = ccr) ok <1>

<cr> -1 ok <0> .<cr> 0 ok <0>

55

For Assembly Lanouage Proarammers:

CODE = (nl n2 f)

MOVEQ.L #0,D10

CMPM.L (A5)+,(A5)+

BNE.S @1

MOVEO.L #-1,DO

@1 MOVE.L DO,-(A5)

RTS

END-CODE

MACH

S" also: - 3 Comon

G-50 O e r

0

'# $ % &'(+ -. 0-9 >; - ? @A-Z[I\] A a-z l-

e~ • (1! n2 - f)
()greater-than

Format: nl n2 >

Action: Compares the two numbers on top of the stack. Returns
a true flag if nl is greater than n2. Returns a false flag
if n1 is not greater than n2.

4 8 3 -ccrzok <0> 8 8 3,ccrzok <0>

<Crz 0 ok <0> .ccr, 0 ok <0>
8 4 z- crok <0>

for Assemblv Lanauaae Prorammers:

CODE 3 (nI n2 f

MOVEQ.L #0,D0

CMPM.L (A5)+,(A5)+

BLE.S @1

MOVEQ.L #-1 ,D0

@1 MOVE.L DO,-(A5)

RTS

END-CODE

MACH

S" also: -z Compar ison
G-51 O erator

! * I •$ % & ' () * +"," 0-9 > t• (A-Z (\IA__' "aoZ(I I

>BO DY _ jai .- al1) to-body"

Format: parameter-field-address >BODY

Action: In a pointer-threaded implementation of FORTH, >BODY
takes the code field address (CFA) of a definition and returns
its parameter field address (PFA, the address where the
executalle code for a word actually begins). In MACH 2,
which is i subroutine-threaded implementation of FORTH,
there are no CFAs. The executable code begins right at the
start of the dictionary entry.

The function of >BODY in MACH 2 therefore is that of a
high-level no-op. >BODY takes a PFA and returns the PFA.

See also: LINK:PBODY , BODY2,LINK

Compita !on
G-52 or

! " #$% (+ 0._9 < > A-Z _ a-z[I}-

"to-in
"

Format: >IN
Action: Puts the address of the system variable whose contents

indicate how far WORD has progressed into the current
input stream on the stack.

BLK, >IN, TIB, and #TIB are the 4 system variables responsible
for maintaining control of the input stream.

Words such as WORD and QUERY after the value of >IN.

ExamR1l:

> (M DUP DROP <cr> 6 ok <0>

5 (At the time the content of the >IN user variable
4 was checked, WORD had progressed 6

characters into the current input stream.
3

2

See also: WORD, BLK, TIB, #TIB

Sysiem/ cal
G-53 Var b e

I '#$%&'()+, .0-9 >:. ? @A-Z 'I\I_ a-ziIt)

>R j n.__(_-) __ _
"to-r

Format: n >R

Action: Moves the number on top of the parameter stack to
the top of the return (loop) stack.

NOTE: MACH 2 has a separate return (loop) stack. I, J, I
may be executed outside of a DO loop to obtain
data or indices.

mpl 5 3,R <Ccr ok <0>

Paramater stack and return Parameter stack and return
stack before >R - stack after >R -

Parameter Return Parameter Return
Stack Stack Stack Stack

For Assemblv Larguaae Programmersm

CODE 3R (n -)

MOVE.L 05,(A3)+
MOVE.L 06,D5
MOVE.L (AS)+,D6
RTS

END-CODE
MACH

See also: R, R@, -I , J

G-4Mar ltion

$ % () -+ /0-9 < .>?@A-Z ({kA a-z(I-

2DL1P (nLn (oL) question-dupe

Format: n ?DUP

Action: Duplicates the number on top of the stack if it is
non-zero.

o 4 ?DUP <cr3 ok <2>

.S <cr3 4 4 <- TOP ok <2>

0 ?DUP <cr Ok <1>
.S .ccr3. 0 <- TOP ok <1>

For Assembly Lanauace Proarammers:

CODE ?DUP (n - n (n)
TST.L (AS)
BEO.S @1

MOVE.L (AS),-(A.5)
@1 RTS
END-CODE
MACH

See also: DUP , OVER , PICK , DROP

G-55 Mari tion

S

!"#$%& ()"+ ,"•/0-9 :;<-> ? @A-Z [\]A_"az I

"" question-free

Format: ?FREE

Action: Outputs information about the remaining available code
space, variable space, and names space.

Example, The following example shows how to use ?FREE. Note
that the sizes of each of the spaces are system dependent.
The numbers ?FREE produces on your system will probably
be much different than those shown below:

?FREE 4=r3
Code : 32768
Variable 12000
Names : 8000
ok<0>

G-56 To

0

!) ./ 0-9 -> ? @A-Z [\]A a-z(I)-

* ~?INCLUDEVI (f_____
" question-include-quote -

Format: flag ?INCLUDE* <filename>"

Action: Conditional version of the word INCLUDE". The file
specified by name will only be included if a false flag
(zero) is passed to ?INCLUDE".

?INCLUDE" may not be used within a colon definition.

p ?INCLUDE* is normally used during a loading process
to ensure that no files are loaded twice. To check to
see if a file has been loaded you would use FIND to see
I a word in that file has already been loaded into the
dictionary. If the word is found FIND will return a true
(non-zero) flag and an address. When the non-zero flag
is passed to ?INCLUDE' the file will not be included
(loaded). If the word in the file is not found FIND wil
return a false (zero) flag and an address. If a false flag is
passed to ?INCLUDE" the specified file will be loaded.
Here is an example of the use of ?INCLUDE":

" FlIellStub" FIND <cCr~ook<2> (Check for word in file)

.S <cr> 76880 0 <- TOP ok <2> (0 means the word wasn't found)

SWAP DROP cr>ok c<1> (Drop the address)
?INCLUDE" FlIel" -cr> (The zero on top of the stack

will cause ?INCLUDE to
bad Filel)

See also: INCLUDE" , FIND

G-57 1/0

O

! '#If$%& () +,-. 0-9 >; . ?@0A-Z[1\]A_ ."a-z{I}

?TERMINAL .)__
Format: ?TERMINAL

Action: Checks to see if a key has been pressed. Returns a true (non-zero)
flag if a key has been pressed and a false (zero) flag if no key has been
pressed.

Exm.D ?TERMINAL is commonly used as the exit test for a BEGIN... UNTIL loop.
Execution of the loop will terminate when a key is pressed:

HELLO
BEGIN

"." Hello" CR
?TERMINAL
UNTIL ; ,ccrz, ok <0>

HELLO -cm¢r Hello

Hello
Hello
Hello -ccrN,

Ok <0>

See also: BEGIN , UNTIL C- 'ater

G-58 1/20

0

@ - (a n)fetch

Format: address @
Action: Replaces the address on top of the stack with the the

long-word (32-bit) value stored at the address.

ExampJle The following example shows that the @ operator will
return the 32-bit value which is stored starting as the
specified address :

HlEX -ccrz2'ok 40O>
VARIABLE STORAGE -ccr>ok <$0>
SOOFO STORAGE ! ccr~p ok <$0>

1STO RAGE
Bytes in memory:

00 08 00 FO0
1ibyte 1ibyte 1ibyte 1 byte

STORAGE @- ccr3 800F0 ok 40O>

For Assemb~ly Lnaouage Prorammers:

CODE @ (a - n)

MOVELI (A5),AO

MOVE.L. (AO),(A5)

RTS

END-CODE

MACH

See also: I ,W@ ,W , Co. C! m r
G-59 0 eralor

#$%& ' () + -. /0-9 < - > ? @A-Z [\I"_ 'a-z(I]-

ABORT0
Format: ABORT

Action: Clears the parareter, return, subroutine and floating point
stacks, sets the state = 0 (the interpreting state), and returns
control to the terminal. No message is issued.

E.D jL The following is a simple example to demonstrate ABORT's

effect :

TEST IF ABORT THEN ; ,ecr3, ok <0>

23 3R ,ccr> ok <0> (Put something on the return stack.)

1 2 3 -cr3.ok <3> (Put things on the parameter stack.)

I TEST <ccr> <crN ok <0> (This caused TEST to ABORT. Had to
hit 2 carriage returns to get the 'ok'
prompt back.)

R * . - .l' -1 Ok <0> (The return stack has been emptied.
There is no underflow message for
the return stack.)

.S -cm, Empty ok <0> (The parameter stack has been emptied.)

For Advanced Proorammets:

ABORT is a vectored routine. The address of the ABORT routine currently being used
is stored in the system variable ABORTVECTOR. An example of a custom abort
handling routine is shown on the ABORTVECTOR glossary page.

So* also: ABORT", ABORT-VECTOR , QUIT P ogr
G-60 st jre

G-60

S ut r

!'#$%& ()"+ , .0-9 > ? @A-Z A\' "a-z(l}

ABORT___(f -) abort-quote

Format: flag ABORT" abort message"

Action: If the flag is true, the message contained within the quotes is
displayed and then the ABORT command is executed. If the
flag is false, no action is taken.

VARIABLE ErrorFlag ,crotok <0>
-1 ErrorFlag ! -cr2 ok <0>

ERRORCHECK
ErrorFlag 0 ABORT" Error " ; .ccr3ok <0>

ERRORCHECK -cr: Error!

See also: ABORT, ABORT-VECTOR , QUIT, IF

P I

G6ontrI
G-61t s ct~ re

! '8$S% & '() *+ -. / 0-9 ; <- ? A-Z[1\1 A_.a-z{(I)}-

ABOT -VECT__JO__(_ _
- abort-vector"

Format: ABORT_VECTOR

Action: Returns the address of the system variable which contains
the address of the routine currently being used to handle
system aborts.

p Users may install their own custom abort handling routine
by storing the address of the routine in the ABORTVECTOR
system variable. The CODE definition 'AbortHandlee' is an
example of a minimal abort handling routine which performs the
standard 'stack-resetting' functions normally performed by
ABORT. The initial positions of the subroutine stack pointer,
the parameter stack pointer, and the loop/floating point
stack pointers are stored in memory following the ABORT_
VECTOR location:

Address of abort handling routine ABORTVECTOR

Initial subroutina stack pointer ABORTVECTOR+4

Initial parameter stack pointer ABORTVECTOR+8

Initial loop stack/fp stack pointer ABORTVECTOR+12

CODE AbortHandler (-)

LEA ABORTVECTOR+4,AO
MOVE.L (AO)+,A7 \ get sub stack pointer
MOVE.L (AO)+,AS \ got param stack pointer
MOVE.L (AO)÷,A3 \ get loop stack pointer
MOVE.L A3,D7 \ loop stack and fp stack start

\ from the same location
SUBI.L #16,D7 \ reset fp stack pointer
PEA QUIT \ execute QUIT
RTS

END-CODE

InstallAbort () \ install custom abort routine

[1 AbortHandler ABORT-VECTOR

See also: ABORT, ABORT"

Sysem/j cal
G-62 V ira e

AB # $ () %,- ./0-9 :<> ? @A-Z [\I" a-z{a_ -

_(n- Lol)___ ____ "absolute"

Format: n ABS

Action: Leaves the absolute value of the number on top of the stack.

Examplea -400 ABS <cr=ook <1>

<cr=, 400 ok <0>

For Assembly Languaae Proarammers:

CODE ABS (n - Inl)

TST.B (A5)

BPL.S @1

NEG.L (A5)

@1 RTS

END-CODE

MACH

See also: NEGATE

Ar ic
G-63 0Operatojr

#$% () + -. /0-9 : <.> ?@A-Z ([\A_'a-z!I}-

AGAIN 0
Format: BEGIN

(code to be executed endlessly)
AGAIN

Action: AGAIN is the second half of the BEGIN...AGAIN endless
loop structure. Whenever AGAIN is reached, it reroutes
program execution back to the code which immediately
follows the BEGIN. Unless the loop uses an unnatural exit
(by using either an EXIT or ABORT command), the
BEGIN ...AGAIN loop will never terminate.

E l QUIT, the word which "runs" FORTH, is an example of an
endless loop:

QUIT

BEGIN

clear the return stack
get Input)

examine and act upon the Input

." ok" CR

AGAIN 0

See also: BEGIN , EXIT, ABORT, UNTIL

G.64 SontrSt4 s t~ re

0

" #% &'(+ 0-9: < - > @ @A-Z [\A "a-z{[I)

* ALLQT_ j 0 (n -)
Format: number-of-bytes-to-allot-in-dictionary ALLOT

Action: Allocates n bytes in the dictionary, starting at the
next available dictionary location. The pointer to
the next available dictionary location (HERE) is
incremented accordingly. Values stored in the
dictionary space should be constant values such
as arrays of fixed data. Space for values which
will change during program execution should be
allocated using VALLOT.

Example* ALLOT is commonly used for creating arrays of values
which require time-consuming computations such as
tables of angle functions or square roots. Rather than
calculate such values as needed in a program, it may
be feasible to create a table of values during compilation
and simply index into the table during execution. The
following example creates an array of the squares of the
numbers from 0 to 100 during compilation:

DECIMAL -crm ok <0>
CREATE SQUARES 202 ALLOT <cr> ok <0>

GEN-SOS
101 0 DO

I I * (Calculating the square.)
SQUARES 1 2* + (Indexing into the table.)

WI (Storing the word-length value.)
LOOP ; ccr:ok <0>

GEN-SOS ,cm> ok <0>

!71UARES 30 2* + W@ . ccrz 900 ok <0.- (Indexing into table.)

See also: VALLOT , C, , W. .,. . HERE , CREATE Dic -'a ry
G-65 Marage ent

0

!'#$%& ')"+ ,-./ - :;< ,,•?@ A-Z 1\1]^_ "a-z{[}~

ALSO0
Format: ALSO <vocabulary-name>

Action: Specifies that the vocabulary specified by <name> should
ALSO be added to the current dictionary search order. The
vocabulary will be the first vocabulary searched in the new
search order (the 'transient' vocabulary). Any subsequent
execution of WORDS will display only the words in the transient
vocabulary and the words used to specify the search order.

Ex.iUR]A; At the beginning of a program, the words ONLY, ALSO, and
DEFINITIONS should be used to specify the search order to
be used during compidation (loading) of the program. For
example, to allow a program to access words from the FORTH,
OS-9, and MATH vocabularies the search order should be
set up as follows:

ONLY FORTH <crv, ok <0> (FORTH is now the ONLY vocabulary searched.)
DEFINITIONS <cr3.ok <0> (Any new definitions will be appended to the

FORTH vocabulary.)
ALSO OS-9 4cr2ok <0> (Now OS-9 has been add* to inse search order.)
ALSO MATH -cr> ok <0> (Now MATH has been .Jded to the search order.)

The search order specified above allows all words in the FORTH, OS-9, and MATH
vocabularies to be found. Whenever MACH 2 looks for a word it will search the MATH
vocabulary first, the MACH vocabulary second and tha FORTH voc',hulary last. This 0
search order may be visually displayed by using the word ORDER:

ORDER 4crN ok <0>

Search Order: MATH OS-9 FORTH
Definitions : FORTH
ok <.Oi

See also: ONLY , DEFINITIONS

Di-tion' ry
G-66 Marage ent

0

! * # $ % & () ' +,-./ 0-9'; < > @ A-Z [\A a-z{I

* AND(n n2 - n3)__

Format: nl n2 AND

Action: Performs the bit-by-bit logical *AND* of ni with n2.
Leaves the result on top of the stack.

Example: The truth table for AND is:

A B A ANDB

0 0 0
0 1 0
1 0 0
1 1 1

BINARY -crm ok <%0>

10101010 <cr>ok <%1>

10001111 AND <crmok <%1>

-<cr>10001010 ok <%0>

DECIMAL <crm ok <0>

For AssembIl Languaoe Proarammnrs:

CODE AND (ni n2 - n3)

MOVE.L (A5)+,D0

AND.L DO,(A5)

RTS

END-CODE

MACH

See also: OR , XOR , NOT, BINARY, DECIMAL

G-67 0 era r

0

'#$%& () +,- 0-9:;<-> ? @A-Z[\ 'a-z{I}-

ASCII
Format: ASCII character

Action: When used inside of a colon definition, ASCII compiles the ascii
value of the single character delimited by spaces as a literal.
During execution of the definition the ascii value will be put on
the stack. When executed immediately, ASCII will leave the ascii
value of the character on the stack.

Example: The word GET-COMMAND takes a character from the user
and compares it to a list of valid command characters to determine
which action the user specified :

GET-COMMAND ." Next command->" KEY CR
CASE

ASCII L OF ." Turning left..." GOLEFT ENDOF
ASCII R OF ." Turning right..." GORIGHT ENDOF
ASCII F OF ." Going forward..." GOFORWARD ENDOF
ASCII B OF ." Going backwards..." GOBACK ENDOF

." Unknown command..."
ENDCASE ; 4cr> ok <0>

GET-COMMAND ccr> Next command -> F
Going Forward... ok <0>

ASCII helps improve program readability and eliminates the process o1 looking up
character values in an ASCII table. The number formatting process provides a
good use for ASCII. The word HOLD requires the ASCII value of the character it
should insert into the formatted string on the stack. To print out a number in
dollars and cents format :

$ (n -) # # # ASCII . HOLD #S ASCII $ HOLD #> TYPE;

t t
Inserts the Inserts the $

9999 $ ccr3, $99.99 ok <0>

See also: LITERAL ,

rac er
G-68 1511

*$%&'() + ./0-9 <-> ? @A-Z I A] a-z(I}-

* ASSEMBLER
Format: ONLY ASSEMBLER or ALSO ASSEMBLER
Action: ASSEMBLER is the vocabulary which contains all of the

assembly language operators.

When used with ONLY, ASSEMBLER will become the only
vocabulary included in the current search order.

When used with ALSO, the ASSEMBLER vocabulary will be
appended to the current search order. This will cause
ASSEMBLER to become the transient vocabulary (the
vocabulary which is searched first). Any other vocabularies in
the search order will be searched after the transient vocabulary.
WORDS will only display the words in the transient vocabulary
and the words used to specify the search order when executed.

Exmpl To specify a search order in which the ASSEMBLER vocabulary
will be searched first and the FORTH vocabulary second:

ONLY FORTH -ccr2ok <0>.
ALSO ASSEMBLER ,mr ok <0>

The word ORDER will display the current search order and
the vocabulary to which new definitions are being appended:

0 ORDER ,=cr>
Search Order : ASSEMBLER FORTH
Definitions : FORTH
ok <0>

To make the ASSEMBLER vocabulary the only vocabulary which
is searched:

ONLY ASSEMBLER mcr>. ok <0>

See also: ONLY , ALSO , ORDER , DEFINITIONS Dy,
Di ctionliry

G-69 Ma ager_ ent

0

! * # $ %.& ' () * + . - . / 0-9: < > ? @ A-Z A\' 'a-z{I}

ASSIGNMODULE (a _ ___

Format: "module name" 1+ trap# ASSIGNMODULE

Action: ASSIGNMODULE is used to assign trap modules (specified
by name) to trap vectors. Trap modules may only be accessed
through one of the 16 software exception trap vectors
provided by the 68000 microprocessor. Before a specific
trap module may be accessed, ASSIGNMODULE must be used
to lag' a trap module to a trap number so the system will know
which module to call when a trap is executed.

ASSIGNMODULE expects to be passed the address of a
C-format string (hence the 1+ above, see") which contains
the module name, and the trap vector to which the module
should be 'linked'.

Eampl Before we can access the routines in the "Extensions" trap
module we must specify which trap vector will be used to
access the trap module:

5 CONSTANT ExtenslonsVector ccr) ok <0>

"Extensions" 1+ ExtensionsVector
ASSIGNMODULE ,cc ok <0>

Now, whenever a TRAP5 is executed, the Extensions trap
module will be called.

See also: MAKEMODULE , TCALL
Ap Iica ion

G-70 or

#$%& () + , - ./ 09 : t ? @A-Z [\]A 'aZ(I}-BAS - a)

Format: BASE

Action: Returns the address of the user variable BASE, which
contains the current task's number radix. A task's
number base controls all number inputoutput
operations for the task.

Exampl The following format is used to change the number
base for a task -

n BASE I

A stack depth indicator is included with the "ok message. A punctuation symbol
is used in the stack depth indicator to indicate the current number base:

DECIMAL -,cr:ok <0>
* No punctuation sign means base 10 (DECIMAL)

BINARY ccri ok <%0>

t A percent sign (%) means base 2 (BINARY)

HEX 'cr3. ok <$0>

,,--- A dollar sign ($) means base 16 (HEXADECIMAL)

3 BASE I (or any base besides those above) <cr> ok 0?0>

A question mark (?) means a non-standard base -

Some examples of changing base -

DECIMAL ccr>. ok <0> Set base to base 10 - DECIMAL.

9 <cr> Ok <1> Put a decimal 9 on the stack.

3 BASE I ,ccr2 ok <?1> Change base to base 3.

-cr> 100 ok <?> 9 decimal output when
base 3 is in effect,
9 base 10 100 base 3

See also: DECIMAL, HEX, BINARY

Us al
G-71 V i

1 * If$ %& 0) + ,-./0-9 • ,> ? 0 A-Z [* a-z{-

BGIN
Format: A BEGIN loop has three possible formats:

BEGIN
(code to be executed while flag - false)

flag
UNTIL

or BEGIN
(code to be executed each time through loop)

flag
WHILE
(code to be executed while flag - true)
REPEAT

or BEGIN
(code to be executed endlessly)

AGAIN

Act on: BEGIN marks the start of either the BEGIN... UNTIL BEGIN
...WWHILE...REPEAT, or BEGIN...AGAIN loops. If these loops
repeat, program control will always be rerouted back to
the code which immediately follows the BEGIN.

KEY-CHECK (Code to be executed

BEGIN W while flag-false)

." No key yet" CR
(Program ?TERMINAL

execution UNTIL;
wilbe
rerouted by
UNTIL back to (?TERMINAL leaves flag
the code which on stack indicating
follows BEGIN if whether or not key has
the flag passed been pressed.)
to UNTIL is false.)

See Also: UNTIL , ?TERMINAL , WHILE , REPEAT, AGAIN

G-72 Sruct re

'$ ()' .- / 0-9 <: > ? @A-Z [\'_'a-z(1}

i BINARY

Format: BINARY

Action: Sets the current task's number base - which controls
all number inpuVoutput operations for the system - to
binary. The stack depth indicator will contain a % sign
when the system is in the binary base.

DECIMAL -cr2 ok <0>
16 4crv ok <1>
BINARY -cr2 ok <%1>
. ,ccr> 10000 ok <%0>

DECIMAL -crmok <0>
: NUMBERS CR 10 0 00 I . LOOP ; cr ok <0>
BINARY ccr> ok <%O>
NUMBERS 4cr>

0 1 10 11 100 101 110 111 1000 1001 ok <%0>

The definition of BINARY is -

DECIMAL ccry ok <0>

BINARY 2 BASE I ; -ccr3 ok <0>

See also: DECIMAL , HEX , BASE

N r
G-73 1/0

'$ % &()+. /0-9 >;. ? @A.Z[\], a-z{-

"b-I-k

Format: BLK

Action: Puts on the stack the address of the system variable whose
contents indicate the location of the current input stream
(see table below). BLK, >IN, TIB and #TIB are the four system
variables responsible for maintaining control of the input
stream.

SK _Value.Inpt.

-2 Serial port
-1 Text file (loading from a text file)
0 Text Input Buffer (TIB)

>0 Single block buffer (the number
indicates which block)

CURRENT-INPUT-STREAM will print out which source is being used as the current
input stream when it is executed :

CURRENT-INPUT-STREAM BLK @
DUP OC IF

" Block
ELSE

CASE
-1 OF ." TextFlle" ENDOF
0 OF ." Text Input Buffer" ENDOF

ENDCASE
THEN

ok <0>

CURRENT-INPUT-STREAM ccr> Text Input Buffer ok <0>

Since CURRENT-INPUT-STREAM was executed from the keyboard, the textfinput
buffer was being used as the current input stream. If BLK contains a positive
number, a single block is being loaded and the block number will be printed out.
It BLK contains a negative number or zero, the name of the corresponding input
stream source will be printed. Put the entire example above in a file and try loading
the file as a fI e and as a single block to generate the other possible messages.

So* also: 3-IN , TIB , #iBy

Syslem/14 Cal
G-74 V e

.....

!#$%& () ,. 0-9 : ;. ? @ A-Z [\IA_ "a-z(I}-

Format: n BLOCK

Action: BLOCK expects a number on the stack which specifies a
certain block (a block is 1024 bytes of data) within the currently
open file. If the specified block is not available in memory,
BLOCK will read it into the least recently accessed block buffer
and put the address of the buffer on the stack. It the specifed
block is available in a block buffer in memory, BLOCK will leave
the address of that buffer on the stack. The first block in a file
is block 0.

p In the following example, the address of the first byte of
the fourth block in the current file for the system is requested.
BLOCK will only read this block in from disk if it determines
that the block is not already in a block buffer:

HEX ccr2 ok <$0>

3 BLOCK -ccr3 74FA6 ok 4$0>

If BLOCK determines that the requested block is not in memory, BLOCK will
figure out which block buffer was the least recently accessed and use that buffer
for the next blockof information. If that buffer was marked as UPDATE'd, BLOCK
will first write the buffer contents out to disk. BLOCK will only read in a block from
disk if the block contents are not already in a buffer in memory.

0

See also: FILEID , BUFFER , LIST

S0orace
G-75 1/0~

*'$%& ()+ .10-9:<. ?@A-Z fk'_ 'a-zfl)-

BO DY)'LIN K (al -a2) "body-to-link0

Format: parameter-field-address BODY>LINK

Action: BODY>LINK takes the address of the start of the
executable code for a word (the PFA), as returned
by *' or [(1, and returns the address of the link
field for the word (the LFA).

l The following sequence may be used to display the
dictionary header for the word DUP :

DUP BODY>LINK 10 DUMP

0

See also: LINK2BODY , , ['1
Corpila•_ on

G-76

0

! ' # $ %& () " + ,"• 0-9 :;< -> ? @ A-Z [\] 'a-z{ -

0 J.BUFFER (n - a)

Format: n BUFFER

Action: Assigns a buffer to block n of the currently open file and
leaves the address of the buffer on the stack. BUFFER
does not move the contents of the specified block from
storage to memory. BUFFER is identical to BLOCK
except it does not initially read in the data from disk.
The first block in a file is block number 0.

Example In the following example, a buffer is assigned to block
number five in the current file for a task:

HEX ccrs ok <$0>
5 BUFFER xcrcok 41>

. <cr> 757A6 ok 40>

Setting the Current File

The FORTH disk/storage I/O words all act upon the current file. The current file is
the file whose word-length (1 6-bits) path number is stored in the system variable FILEID.
Each time a file is successfully opened, a path number which uniquely identifies
the file is returned. To make the file the current file, this path number should be
stored into the FILEID system variable. BLOCK, BUFFER, UST, and LOAD use FILEID
to determine which file to access. An example of making a file current is given below:

ALSO OS-9 <ov ok <0>
"MyFile" 1+ $OPEN . <cr>. 4 ok <0> (Open the file MyFile.

$OPEN will return a path number.)
4 FILEID W <cr>. ok <0> (Store this path number in FILEID.

Now MyFfle is the current file.)

See also: BLOCK

StorI e
G-77 1/0

$ % #$& ()•+ ,-.0-9 :;< > ? @ A-Z A]'_a-z{}

BYE

Format: BYE

Action: Used to leave MACH2 and return to the OS-9 shell.
Restores the previous terminal characteristics and uses
F$Exit to terminate the MACH2 process.

Assembly Note: This is how F$Exit could be called from assembly language:

CODE ByeBye (-)

MOVEQ.W 0,0D 1 \ status code to return to parent
OS9 F$Exlt \'calrFsExit

END-CODE

See also: $

G-78 Int e

0

! * #$%&)• + ,../0-9 :;< > ? @ A-Z [\]"_ 'a-z{I}~

0 character-store

Format: byte-value address C!

Action: Stores the byte-length (8-bit) value at the specified address. C! is
referred to as "character-store* because it is often used to manip-
ulate ascii characters (which are expressed as byte-length values).

Example: The following example shows that even though numbers placed on
the stack are represented using 32-bits, the operator C! will take only
the least significant byte (8-bits) and store it in memory:

HEX ccrp ok <$0>
VARIABLE STORAGE <crp ok <$0>

The number
2F STORAGE Cl ccr: ok <$0> 2F as it appears

on the stack./
00 00 00 2F

1 byte 1 byte 1 byte

Bytes in memory:

I I*I I 1 i 1 1 1 1 1 j 2Fi 1"7I1iI
lower memory -> higher memory t

C! takes only the lowest-order
STORAGE byte from the stack and stores

For Assembly Language Programmers: it starting at the specified address.

CODE Cl (C a -)

MOVE.L (A5)+,AO

MOVE.L (AS)+,D1

MOVE.B D1,(A0)

RTS

END-CODE
MACH

Seealso: C@,W!,W@, ,@ IMemory

G-79 0 m r

0

'# S%& () +,- + /0-9 : < ? @A-Z (\IA 'a-z(I]-

Format: 8-bit-value C,

Action: Lays the 8-bit value into the next available memory
location in the dictionary. The pointer to the next available
dictionary location is incremented by 1 byte.

E3xagiL.L In the following example, a table of data is being created
in the dictionary. CREATE is used to make the dictionary
header (only the contents of a definition are kept in the
dictionary, the headers are kept in a separate location).
Next, C, is used to lay the desired data into the dictionary.
Each time C, is used, the HERE pointer (the pointer to
the next available dictionary location) is incremented by
1 byte. When TABLE is executed, it will push the address
of the first byte of data, the A, on the stack:

CREATE TABLE 4cr3, ok <0>

ASCII A C, -cCtok <0>
ASCII B C, ccr~pok <0>
ASCII C C, ccrp ok <0>

TABLE C@ EMIT 4ccr2, A ok <0>
TABLE 2+ C@ EMIT -ccr2- C ok <0>

It is not necessary to keep track of address boundaries when using C, since all other
words which affect the HERE pointer (the pointer to the next available dictionary
location) will adjust the pointer to an even boundary before preceding.

Se also: ,, W,, ALLOT, HERE

Co piia !on
G-80 ANor

C e (- C) "c-fetch

Format: address CO

Action: Replaces the address on top of the stack by the 8-bit value
which is stored at the address. The upper 3 bytes of the
4 byte value returned are set to zero.

Ex~a~mplet The following examp~le shows that the C@ operator will
return the 8-bit value which is stored starting as the
specified address :

HEX 4ccrDok <$0>
VARIABLE STORAGE -ccrz-ok <$0>
IF STORAGE C! ccr~p ok 40O>

1STORAGE
Bytes in memory : 9

lower memory ->higher memory

00 00 00 IF

STORAGE C@ 4cr> 1F ok <$0>

For Assembly Language Proarammers:

CODE CO (a c)

MOVE.L. (A5),AO

CLR.L DO
MOVE.B3 (AO),DO

MOVE.I. DO,(A5)

RTS
END-CODE
MACH

Sao also: C! Vem~
G-81 0 eralor

!#$%&(+, ./0-9 :<. 7@A.Z [\4_, a-z11)-

CASE
Format: CASE is used in the following format:

CASE
n OF (code executed if n is matched) ENDOF
ni OF (code executed if nM is matched) ENDOF
n2 OF (code executed if n2 is matched) ENDOF

nn OF (code executed if nn is matched) ENDOF
(code executed if no match was made above)
ENDCASE

Action: CASE marks the beginning of the CASE.. .OF...ENDOF...ENDCASE
program control structure (also referred to as a CASE statement).
The number on the stack is compared to each number preceding an
OF... ENDOF pair until either a match is found or until there are no more
OF..ENDOF pairs left. If a match is made, the number will be dropped
from the stack and the code between the corresponding OF and
ENDOF will be executed. Upon reaching the ENDOF, program control
will be redirected to the code which immediately follows the ENDCASE.
If no match is made, any code between the last ENDOF and the
ENDCASE will be executed. After this, ENDCASE executes. Its
function is to drop the top number-the unmatched number-from the

stack. Any number of OF...ENDOF pairs may be used within a CASE
statement.

See also: OF , ENDOF , ENDCASE

P ogr m
G-82ontrdG-82 uct re

S uct

$' $% & () + , . 0-9 >: . ? @ A-Z [\I' -_'a-zfIH ~

SCMOVE (al a2 n - _ _ _ _ ,)
•c-move"

Format: source-addr destination-addr #of-bytes CMOVE

Action: Moves n bytes located starting at the source address to memory
starting at the destination address. The move begins with the
first byte in the source string and continues until the last byte
in the source string has been moved. CMOVE is good for
moving strings down toward lower memory locations.

E l The following example creates an array of asci characters in
the variable space (using VARIABLE and VALLOT), and then
shifts the whole array 12 bytes downward in memory.

VARIABLE DEST 8 VALLOT-ccrz ok <0>
VARIABLE SOURCE 8 VALLOT ,ccrok 40>

SOURCE 12 EXPECT ,crMACH 2,ccri ok <0>

SOURCE DEST 12 CMOVE ,cr> ok <0>
DEST 10 DUMP ,ccr2
0765DE: 4D41 4348 2031 0OFF FFFF FFFF FFFF FFFF MACH 2.000000000

ok <0>

See also: CMOVE3 , DUMP , VALLOT

G-83 0 e

0

$ $%& +)"÷,- 0-9 :;<. @A-Z [\]A_ " a-z{I

"c-move-up"

Format: source-addr destination-addr #of-bytes CMOVE>

Action: Copies a region of memory n bytes long, beginning at the
source address, to memory beginning at the destination
address. The move starts by moving the last byte in the

source string to the last position in the destination string
and continues until the first byte in the source string has
been reached and moved. This version of CMOVE is usually
used for sliding strings toward higher memory locations.

Em.l The following example creates a string of ascii characters
in memory and then shifts the entire string 2 bytes
toward higher memory.

VARIABLE SOURCE 4 VALLOT ccrl,.ok <0>

SOURCE 8 EXPECT -tIILLOccr=ok <0>

SOURCE 10 DUMP 4ccr,
0765DE: 4845 4C4C 4F00 FFFF FFFF FFFF FFFF FFFF HELLO. JCJCJCJ(J
Ok <0>

SOURCE SOURCE 2+ 8 CMOVE3, -crc ok <0>

SOURCE 10 DUMP •crm
0765DE: 4845 4845 4C4C 4F00 FFFF FFFF FFFF FFFF HEHELLO. UUUU.UUU
ok <0>

If CMOVE had been used instead of CMOVE> the results would have been much different.
Because CMOVE starts moving bytes from the beginning of the string, when it is used to
shift bytes up towards higher memory locations, it will cause this overwrite error:

SOURCE SOURCE 2+ 8 CMOVE -cr= ok <0>

SOURCE 10 DUMP ccr3.
0765DE: 4845 4845 4845 4845 4845 FFFF FFFF FFFF FFFF HEHEHEHEHEJCjUIUJ6U
ok <0>

So* also: CMOVE FILL M --• y

G-84 0 e ra r

! "#$% '("+ , . 0-9 : < - > ? @ A-Z (\]"- "a-z{I}~

* CODE
Format: CODE <name-of-routine>

...assenbly language...
END-CODE

Action: Defining word, similar to : which is used to create new
dictionary entries. The compile-time action of CODE involves
creating a new header for the name which follows it, putting
the system into the compiling state, adding the ASSEMBLER
to the dictionary search order and setting the smudge bit of
the new definition so that the definition will not be visible until
completed.

The opcodes for the assembly language words used between
CODE and END-CODE will be compiled into the new definition.

Exmpl CODE is used below to create the word WIPEOUT. If run,
WIPEOUT will destroy large portions of the current contents
of the computer's memory so please, do NOT try this at
home ! Notice that the MACH 2 assembler allows normal,
assembly language branches to occur within CODE definitions.

CODE WIpeOut (New word WIPEOUT created.)
@1 CLR.L (AO)+ (Assembler vocabulary now included search

BRA.S @1 order.)
END-CODE (CODE definitions end with END-CODE.)

For Advanced Pmagrammers:
Note that the mnemonics in the assembler vocabulary are all immediate words
which compile their corresponding opcodes into the definition being created.

See also: END-CODE , ;CODE , MACH, G

Co p1pa Non
G-85 orc

!•#$%& +)"÷ 0-9 : > , ? @ A-Z [\A_ a-z{-

COMPILE
Format: Generally used in the format -

: forth-definition>
COMPILE run-time-word
... code to be executed during compilation...

IMMEDIATE

Action: Although <forth-definition> is an immediate word,
COMPILE will force the word following it
(<run-time-word>) to be compiled, instead of run, when
<forth-definition> executes. When <forth-definition> is
later used within another definition, only <run-time-
word> will be compiled into the definition, the other
words in <forth-definition> will run immediately and
will not generate any compiled code. This type of word
is known as a compiling word. When compiling words
are used in the creation of a new definition they perform
compile-time actions and may compile run-time code
into the new word. In cforth-definition>., crun-time-word>
is the run-time code which would be compiled into a new
word and *code to be executed during compilation" is the
compile-time actions which would be performed.

Exmples DO is an example of a FORTH compiling word which does
add run-time code to the word being defined (this is a
simplified version of DO):

: 23R 3R 3-R ; vcrNok cO>

: DO COMPILE 2:,R HERE ; IMMEDIATE .cra ok 40>

run-time code code executed compiling words
which is compiled during compilation are always
in the definition immediate
which contains DO

During compilation of a new definition, DO must leave the current address
on the stack so LOOP will know how far back it wil have to jump if looping
is ever required. All that DO wil leave in the final compiled version of the
new word is the run-time action of DO which is to move two numbers
from the parameter stack to the loop stack.

S"e also: [COMPILE] , IMMEDIATE Co ipia Jon
G-86

S %&() -+ 0-9 : ? @A-Z [\]J_"a-z(I_ -

* CONSTANT (n_____

Format: 32-bit-value CONSTANT <cname>

Action: Defining word which creates a dictionary entry using <name>
and stores the 32-bit-value in its parameter field. The
run-time action of words created by CONSTANT is to push
the value in their parameter field on the stack.

EiampIle A high-level definition of CONSTANT could be:

: CONSTANT (n -) CREATE , DOES> @;

5280 CONSTANT FT/MILE ccr3- ok <0>

FT/MILE - cr> 5280 ok <0>

In MACH 2 constants and variables are state dependent words. The above
definitions of is a simplified version of the actual CONSTANT definition.

Se also: VARIABLE , CREATE , DOES3,

G-87 or

0

#as&'()+.-.0-9 :<.> ? @A-Z [\]A_ 'a-Z{I}

CONVERT ni al -n2 a2)

Format: seed address-of-string-to-be-converted CONVERT

Action: CONVERTs the ascii string at the specified address to a
binary number. CONVERT expects on the parameter stack a
single-length (32-bit) number and the address of the string.
The string conversion process begins with the second byte in
the string, the first byte (assumed to be a length byte) is skipped.
CONVERT continues working on the string, and accumulating
the converted number into the seed on the stack, until it
encounters an ascii value which does not represent a valid digit
in the current number base. CONVERT leaves on the stack the
single-length value of the number it has CONVERTed so far and
the address of the first invalid ascii value it encountered.

SIn the following example, a string to be CONVERTed to a number
is stored into a variable location using EXPECT. Then CONVERT is
used to convert the string to a number:

DECIMAL -cr> ok <0> (CONVERT converts the string to a number with regard to
the current number base.)

VARIABLE STORAGE <cr3ok <0> (The string will be stored in the variable
4VALLOT vcrok <0> STORAGE. 4 extra bytes have been

allocated for STORAGE so a string which
contains up to 8 bytes may be kept in
STORAGE.)

STORAGE 1+ 8 EXPECT <cr> 432-4000 .ccr3ok <0>
EXPECT will start storing the string in the second byte of
STORAGE since CONVERT skips past the first byte in the
string.)

0 STORAGE CONVERT -cCF3. ok <2> (The address on top of the stack points to)
TOP ok <2> (the first unconvertable character)

. c 432 4414 (-T oCONVERT encountered. This should be the)

*.'. The second number is the value of the)

C@ EMIT ccri.- ok <1> number CONVERT has managed to convert so)
(far. If the number passed to CONVERT had not)

been a zero, the CONVERT would have)

(The first unconvertable character appended the 432 to the end of the original
number-i.e. if the number had been a 98,)

CONVERT encountered w t CONVERT would have returned a 98432.)minus sign.)

See also: EXPECT , VARIABLE VALLOT , NUMBER? rmb
G-88 1/0

0

* '()'÷,- ./0-9 :; • ? @ A-Z 1\1_'a-z(I)-
CO N -(a -a n)

Format: address-of-length-byte-of-stnng COUNT

Action: Given the address of the length byte of a string in memory,
COUNT will push the address where the text of the string
actually begins (old address+1 to skip over length byte)
and the length of the string on the stack. COUNT is partic-
ularly useful for setting a string up for TYPE since the
stack after COUNT holds the two values TYPE expects.

Example: . returns the address of a string in memory:

" hello " ,ccr3 ok <1>
COUNT TYPE ccr3 hello ok <0>

In this example the stack is displayed after COUNT to show the length and address
left by COUNT:

" HI I" <cr3ok <1>

COUNT ,ccrz ok <2>

.S ccrm17795 4 <- TOP ok <2>

TYPE ccrz. Hi! ok <0>

Sea also: TYPE ,

Character

!"#$%& ')"+ , ./0-9 :;<-•?@A-Z [\]A_ "-{}

COUNTER
Format: COUNTER

Action: Zeros a variable to be used for keeping track of time
and initiates the start of a timing process. The clock
rate (the number of ticks per second) is usually 100
hertz.

ExamplL The following example shows how COUNTER...TIMER may
be used to time a null loop:

NULL-LOOP
COUNTER
10000 0 DO LOOP
TIMER ; cr2ok cO>

NULL-LOOP ccrz 2 ticks I 100 hertz ok <0>

Note that the time returned by COUNTER...TIMER is
clock rate dependent.

See also: TIMER

FIORT -1
G-90 Tool

!"#$%& ()"+ ,-.0-9 < > ? @A-Z [\" a-z{}

Format: CR

Action: Prints a carriage return and linefeed.

Example: The following word prints "hello !" on the screen 10 times.
A CR is inserted once each time though the loop so that
each 'hello !" will be on its own line -

HELLO CR 10 0 DO . hello I" CR LOOP ; -cr> ok <0>

HELLO <cr2

hello!
hello!
hello!
hello!
hello!
hello!
hello!
hello!
hello!
hello! ok <0>

See also: EMIT

ChaacerG-91 1/0~

! ' #$%&) + ,./0-9 :; > ? @A-Z [\]A 'a.z{

CREATE

Format: CREATE <name>

Action: Defining word which builds a header for <name> in the
names space.

ExamPiL CREATE is commonly used to build defining words.
An example of a useful defining word is the word ARRAY
which defines a two-dimensional array:

INDEX-ARRAY (x y addr I cols Index - a
addr @ -3. cols
cots y * -2 Index
x addr + Index + 4 +

ARRAY { rows cols --
CREATE

cols
rows cols * ALLOT

DOES2.
INDEX-ARRAY

2 3 ARRAY HOLLYWOOD-SQUARE (Define a 2x3 array.)

1 2 HOLLYWOOD-SQUARE C@ (Index into array.)

See also: HERE , ALLOT , VARIABLE , VALLOT

Co plto
G-92 o io

! * # $ %& +(,- 0-9 < ; : A-Z I\• 'a-z (1}-

dl~ d2 Ql-plus"

Format: dl d2 D+

Action: Adds two 64-bit numbers and leaves the 64-bit
sum on the stack.

See also: D-c , ONEGATE
Ar Ithme tic

G-93 0 e rao

! * #$%& +(,, 0-9 : .•? @A-Z [\]A_ ."a-z{ I)-

" l d-less-than *

Format: dl d2 D<

Action: Compares the two double-length (64-bit) numbers
on top of the stack. Returns a true (non-zero) flag if
dl is less than d2 and a false (zero) flag if dl is not
less than d2.

S.. also: D., DNEGATE

Ar ~thmtic
G-94 0 wajo r

()$ + -. /0-9 < ? @A-Z [],'a-z(I}-

* DEBUG
Format: DEBUG or DEBUG <na•ne-of-FORTH-Iword>

Action: Used to invoke the debugger. If DEBUG is executed
immediately it will cause the debugger to be immediately
entered. If DEBUG is executed immediately with the
name of a FORTH word following it a breakpoint will be
set at the first instruction in the word. The next time the
word is executed, the debugger will be entered. DEBUG
may also be compiled into a definition.

Example: Three ways to set a breakpoint at the first instruction in the
word FRED: :FRED DUP . ;

#1. Interactively install a breakpoint at the first instruction of FRED:

DEBUG FRED ,cr3.ok <0>
FRED <cr>

00A544: MOVEL (AS),-(AS) DUP

The next time FRED is executed the debugger will stop execution and display
the first instruction in FRED.

#2 Compile DEBUG into the FRED definition:

: FRED DEBUG DUP ; <cr> ok <0>
FRED <cr>

00A544: MOVEL (A5),-(AS) DUP

The next time FRED is executed the debugger will stop execution and display
the first instruction in FRED.

#3 Interactively execute DEBUG and set a breakpoint at FRED:

DEBUG ,=or>

FF4E72: TST.L (AS)
> BR FRED ccrG.

ASE EMBLER
G-95 N r

'#$% & '() +,- / - :; , @ A.Z [\] A -zI_

DECIMAL0
Format: DECIMAL

Action: Sets the system number base - which affects all
number input/output operations - to decimal.
The stack depth indicator does not contain a
punctuation sign when the base is DECIMAL.

Examale

DECIMAL ccr> ok <0>

* NUMBERS CR 10 0 DO I . LOOP ; -cro ok <0>

NUMBERS ,•cr>

01 23456789ok<0>

The definition of DECIMAL is -

: DECIMAL 10 BASE ! ; 4cr> ok <0>

0

See also: BASE , HEX , BINARY

G-961

() + , -. 9 :< - ? @A-Z I\]A a-z{(I)-

* DEFINITIONS
Format: <vocabulary name> DEFINITIONS

Action: Makes the transient vocabulary (the vocabulary which is
currently being searched first in all dictionary searches) the
vocabulary to which all subsequent definitions will be
appended.

Example If DEFINITIONS is used after ONLY, it will make the only
vocabulary being searched the vocabulary to which any
new definitions will be appended :

ONLY FORTH <cr> ok <0> (At this point, ONLY the FORTH vocabulary is being
searched which means the FORTH vocabulary must
be the vocabulary which is being searched first.)

DEFINITIONS ccr2 ok <cO> (DEFINmONS will see that the FORTH vocabulary
is being searched first and will make the FORTH
vocabulary the vocabulary to which all now
definitions will be appended.)

If DEFINITIONS is used after ALSO, it will make the vocabulary whose name was just
passed to ALSO the vocabulary to which new definitions will be appended :

ALSO ASSEMBLER ccr3-ok <0> (This use of ALSO will make ASSEMBLER the
new transient vocabulary.)

DEFINITIONS ccrz ok <0> (Since the ASSEMBLER vocabulary is now
the vocabulary being searched first,
DEFINITIONS will make any subsequent
definitions be appended to the ASSEMBLER
vocabulary.)

The word ORDER will display the vocabulary to which new definitions are currently being
appended:

ORDER -ccr>
Search Order : ASSEMBLER FORTH
New Definitions : ASSEMBLER
ok <0>

See also: ONLY, ALSO , ORDER Di a ry
G-97 Mar age ent

!"#$%& ')"+ ,-./0-9 •;< .•?@A-Z [\]A_ "a-z{I}-

DEPTH -(mnf)______

Format: DEPTH

Action: Returns a count of the number of items on the parameter
stack.

xamJ o10 20 30 40 50 60 70 -cr-ok <7>

DEPTH <M-r= 7 ok <7>

"70 The depth is 7 since there are
seven items on the stack.

60

50

40

30

20

10

So. also: .9

G-98 T o

! ' # $ %& ()"+ ,-•/0-9 :;< > ? @ A-Z A* "a-z{I}

* DISK (-ia)

Format: DISK

Action: Puts on the stack the address of a variable which holds the
file system result code for the most recent file access.

Empl The following definition culd be used to check the result
of BLOCK:

DISK-ERROR?
DISK W@
?DUP
IF

CR ." Disk Error"
THEN

0

SyseJm/1 ser
G-99 V a e

I

! " *$%•1 () - +" , - • / 0-9 < > ? @)AoZ [\]A-_-"a.z(ill

DNEGATE -(d) d-negate

Format: d DNEGATE

Action: Changes the sign of the double-length (64-bit)
number on top of the stack (two's complement).
ThenegationofdisdO-d. "d-negate"

Soo also: 0C ,+

Ar thmei
G-1 00 0 eao

* %&() + - 0-9 : ; < @A-Z (\]Ja-z{I}-

O ..D..nO_ (nl n2--_)

Format: There are two formats for DO loops:

lrimt index
DO

(code to be executed each time through loop)
LOOP

or li"it index
DO

(code to be executed each time through loop)
increment value
+LOOP

Action: DO marks the beginning of the DO.. LOOP or DO.. .+LOOP
program control structures. DO loops are used when a
certain sequence of operations must be executed a known
number of times. The two numbers passed to DO are
called the limit (n1) and index (n2) and are used by
either LOOP or +LOOP to determine the number of times
the code within the loop should be executed. DO is
executed only once and its action is to move the limit
and index to the loop stack for LOOP or +LOOP.

xampl : NUMBERS 5 0 DO I . LOOP ; ccr3.ok <0>
NUMBERS -ccr>0 1 2 3 4 ok <0>

The afecLofDO
Parameter and loop stack Parameter and loop stack
right before DO: right after DO:

Index 0 l]de
Limit aUnLMA

Param Loop Param Loop

SooAlso: LOOP,+LOOP IJ P4ogjm
G-101 Sl trre

O c

*'$%&'()+,- 0(-9: - ? @A-Z[\,_a-zI~

"does

Format: <new defining word>
(copile-tirne behavior)
DOES>
(run-time behavior)

Action: Used in the definition of a new defining word to define the run-time
action of words created by the defining word. The words which follow
DOES> in a defining word definition will be executed by words
created by the defining word, not by the defining word itself. When
a word created by a defining word which uses DOES> is executed, its
parameter field address is pushed on the stack and then any words
following DOES> are executed.

Eumnhki The defining word CONSTANT could be defined as follows:

CONSTANT (n

CREATE (Creates a new dictionary entry using
the next name in the input stream.)

(Stores the constants value in its
own parameter field.)

DOES> (Marks the end of the compile-timo
behavior and the beginning of the
run-time behavior.)

(When a word created using CONSTANT
is executed DOES> will push the word's
parameter field address on the stack.
@ gets the value which was stored in
parameter field during compilation and
puts it on the stack.)

12 CONSTANT DOZEN cm- ok <0>
DOZEN . -<cr312 ok <0>

Se@ also: CREATE Co pl a ion
G-102

0

$#%&(" + ,.0-9 : .?@A-Z [\] "a-zfI)

* D.BOQP_(n -)
Format: n DROP

Action: Removes the top item on the stack.

ExampeLe 3 2 DROP cr2ok <1>

For Assembly Lanouaoe Proorammers:

CODE DROP (n -)

ADDO.L U4,A5

RTS

END-CODE

MACH

See also: DUP , OVER , PICK

G-103 Mar ipulztion

'#$%&'()+,-.0-9 :<.-> ? @A-Z [\IA_ 'a-z{II-

DUMP (a n -) 0
Format: address count DUMP

Action: Displays the contents of n memory locations starting
at the specified address. The contents of memory
locations are always displayed as hexadecimal ascii
values in groups of 16 bytes.

ExamflDJ It is convenient to use DUMP for examining string
data in memory:

: GretStrlng () " Hello !!" ; cr ok <0>
GreetStrlng 10 DUMP -ccr>

2 3 4 5 6 7 8 9 A B C D E F 0 1 23456789ABCDEF01
055192: 601A 0848 656C 6C6F 2021 2100 2B1F 4E75 a..He11o.!!.-.Nu

OJ <0>

G-104 Too

+ #$% &'(+,-. 0-9":<- @A-Z[A_ a-Z(-
e _D__U.P (n-- n n)

"dupe "

Format: n DUP
Action: Duplicates the number on top of the stack.

ExamlJZleU 6 DUP ccrt'ok <2>

.S ccr) 6 6 <- TOP ok <2>

For Assembnl Lana•aae Programmers-

CODE DUP (n- n n)

MOVE.L (AS),-(AS)

RTS

END-CODE

MACH

See also: DROP , OVER , PICK, ?DUP

G-105 Ma ¶pl Ition

eS

I'#$%&()+, 0./0-9 :< ?@A-Z[\]Aa-zfI)-

ELSE
Format: flag

IF
(code executed if flag passed to IF is true)

ELSE
(code executed if flag passed to IF is false)

THEN
(code which is always executed)

Action: ELSE is the middle word in the IF.. .ELSE... THEN program
control structure. The code between the ELSE and THEN
will be executed if a false flag (zero) is passed to IF. Once
the THEN is reached, program execution will continue on to
the code following the THEN. If a true flag (non-zero) is
passed to IF, the code between the IF and ELSE will be executed.
Upon reaching the ELSE, program execution will be redirected
to the code following the THEN.

ExmnLE FAREWELL expects a number on the stack. If the number is
greater than 3, a *good day' message will be issued. If the
number is less than 3, a "bad day' message will be issued:

3 CONSTANT GOOD -4cr> ok <0>
FAREWELL (n

." Have a"
(The greater- .GOOD a

than corn- IF

parison I" good 4 . (Code executed if flag
operator is ELSE passed to IF is true.)
used to ." bad" 4- (Code executed if flag
generate a THEN passed to IF is false.)

(The code following
the THEN is always
executed.)

2 FAREWELL ,ecr. Have a bad day! ok <0>

5 FAREWELL -4crt Have a good day ' ok <0>

Seo Also: IF THEN PGogrm
St .ct re

'#$%&() + -. 0-9 :;<- > ? @A-Z[1\111_'a-z (I)-

• EMIT (n-)

Format: ascii-value EMIT

Action: Prints the character whose ASCII value is on the stack.

Examl In the following example ASCII is used to put an ascii value on
the stack and EMIT is used to type the character represented
by the ascii value out to the current output device:

ASCII A EMIT -ccr3A ok <0>

In this example, the ascii value for an "M' is put on the stack before EMIT is executed:

HEX ,=cr2 ok <$0>

4D EMIT 4cr> M ok <$0>

EMIT is also used in the definitions of CR and SPACE:

HEX ccrfook <$0>

SPACE 20 EMIT ; -ccr3ok <$0>

CR 00 EMIT ; ccrook <$0>

See also: CR , SPACE

C tacer
G-107 1/0i

! "#$ &'() + -. •/ 0-9 :;<->? @ A-Z [\]A_ .a-z(i).

EM4PTY

Format: EMPTY

Action: Deletes every dictionary entry which is not a kernel
word. EMPTY performs the same special features as
FORGET when deleting certain types of words.
EMPTY is usually used to return the system to its
start-up state.

WARNING:

Breakpoints set using the MACH2 or OS-9 debugger
become invalid when the definition in which the breakpoint
was originally set is removed from the dictionary with the use
of EMPTY or FORGET. When a breakpoint is set, the
original instruction at the breakpoint address is replaced
with a special opcode. The original instruction is saved away
by the debugger. The next time the breakpoint address is
executed, or when the breakpoint is cleared, the old instruction
will be swapped back into the code. If the original definition
was removed from the system and a new definition loaded in,
the debugger will try to replace sections of code in the new
definition with old instructions which it saved away previously.

To avoid having new definitions damaged, clear all breakpoints
immediately before or after the use of EMPTY or FORGET. 0
The MACH2 debugger will print an error message if the
breakpoint conflict described above is detected.

S.. also: FORGET D.
Dic~tion* ry

G.108 Ma age ent

0

!"#$%& ()'+ ,-• 0-9 > ? OA-Z 1\1]1_ "a-z{I}-

* EMPTY-BUFFERS

Format: EMPTY-BUFFERS

Action: Clears the update bits of each block buffer so that the contents of
the buffers will not be saved to storage.

See Also: UPDATE , FLUSH

1e

#$% () + -. 10-9 :< > ? @A-Z [\I]_a-z(I)-

END-CODE
Format: CODE name-of-routine ...assembly language... END-CODE

Action: Used to end CODE definitions. It restores the base, cuts the
first vocabulary from the search order (which should be the
ASSEMBLER) and then leaves compile-mode. Note that
END-CODE does not lay in an RTS ($4E75) as ';'does. This
must be explicitly done in a code definitions.

SxamDJL END-CODE concludes the definition of MAX by snipping the
assembler from the dictionary search and then leaving the
compiling mode.

CODE MAX (ni n2 - n3
MOVE.L (AS)+,DO
CMP.L (A5),DO
BLE.S @1
MOVE.L DO,(A5)

@1 RTS (IncludetheRTS)
END-CODE (Leave compile mode)

See also: CODE , ;CODE , MACH

CO iJon
G-1 10 orc

MW0

E N D C A S E '# $ % & ' () '* + , - . 0 -9 : ; = ? @ A -Z ([\] A _ ' a -z { I]-

* E.NDCASE _(_n -)

Format: ENDCASE is used in the following format:

CASE
n OF (code executed if n is matched) ENDOF
ni OF (code executed if ni is matched) ENDOF
n2 OF (code executed if n2 is matched) ENDOF

nn OF (code executed if nn is matched) ENDOF
(code executed if no match was made above)
ENDCASE

Action: ENDCASE is the terminating word in the CASE...OF...
ENDOF...ENDCASE program control structure. If a match
is made within the CASE statement, program execution is
routed to the code which immediately follows the ENDCASE.

ExamDl :TEST(n -) CASE
1 OF ." ONE" ENDOF
2 OF . TWO" ENDOF
3 OF ." THREE" ENDOF

"No match."
ENDCASE

; crfl ok <0>

1 TEST (crc ONE ok <0>

4 TEST ,ecru, No match. ok <0>

See also: CASE , OF , ENDOF

G-111ontr~
G-11 St uct re

I

!'0%&()+,-.0-9:; ?@A-Z [\]A_ 'a-z(I}~

ENDOF
Format: ENDOF is used in the following format:

CASE
n OF (code executed In is matched) ENDOF
ni OF (code executed if ni is matched) ENDOF
n2 OF (code executed if n2 is matched) ENDOF

nn OF (code executed if nn is matched) ENDOF
(code executed if no match was made above)
ENDCASE

Action: OF is the ending word in the OF...ENDOF structure used
within a CASE statement. If the number preceding an
ENDOPs corresponding OF is matched, the code between
the OF and ENDOF will be executed.

0

See also: CASE, OF, ENDCASE Pfo rm
G-112 Sit.l re

0

! * #$%'/& ' () * +,.. 0-9 ::<-> ? @A-Z [\]'_ 'a-z(l}-

* EXECUTE (a.____

Format: parameter-field-address EXECUTE

Action: EXECUTE executes the word whose parameter field
address is on the stack. It does this by moving the
parameter field address to the subroutine stack and
executing an RTS. This causes the word to be executed.
EXECUTE has the same effect as just executing the word
itself by typing its name.

Ea.lDJl• The word' will put the parameter field address of the
word which immediately follows it on the stack. The
parameter field address is the address where the
executable code for a word begins. EXECUTE will
take the PFA of a word and execute it just as if the
name of the word had been typed:

ONLY FORTH cr ok <0>
. ORDER EXECUTE 4cr>
Search Order : FORTH
Definitions : FORTH
ok<0>

The word ORDER was "ticked" to get its
pfa and then executed by EXECUTE.

0

See also: , []
P I

0

'#%&')+,-.0-9::-c ? @AoZ['~{

EXIT
Format: EXIT

Action: Prematurely exits the definition it is in by removing the
address on top of the subroutine stack and jumping to the
address which was second on the subroutine stack. This is
equivalent to inserting a ';' in the middle of the definition.

If an EXIT is to be used within a DO loop, the limit and
index should be removed from the loop stack before the
EXIT is executed so that the loop stack is left in the same
state it was in before the DO loop started execution.

Exm e The EXIT in DANGLING acts as if it were the; and causes
execution of the word to terminate:

DANGLING
"." This sentence will not be" EXIT ." finished." ; <cr> ok <0>

DANGLING <ccr,- This sentence will not be ok <0>

The following example shows how EXIT may be used to force an exit from a

PEGIN...AGAIN loop:

BACKDOOR BEGIN ." Hello" ?TERMINAL IF EXIT THEN AGAIN ; ccr3ok <0>

BACKDOOR -ccr2, Hello

Hello

Hello

Hello

'ello -c¢r2- ok <0>

"Iee also: LEAVE

P ogra

G- 14

I'#$%& +) ,../0-9 :;< > ? @A-Z [\(i 'a-zI}-

* EXPECT (a __ -)

Format: dest-addr number-of-chars EXPECT

Action: Waits for n characters to be entered from the keyboard,
transferring each one to memory starting at the specified
address. A carriage return will cause EXPECT to terminate
before n characters have been received. Otherwise,
EXPECT will keep waiting until all n characters have been
received. The system variable SPAN contains the number
of characters actually received during the most recent
execution of EXPECT.

i The word CAPTURE will take characters received by an
execution of EXPECT and create a counted string. A
counted string is a string which holds its length in the
first byte (the length byte). The characters of the string
immediately follow the length byte. Counted strings
are a convenient format for operators such as COUNT
and TYPE:

VARIABLE TEMP 20 VALLOT ccri ok <0>
CAPTURE

TEMP 1+ (Putting an address on the stack for EXPECT.
The first byte in the TEMP storage area is
skipped over because this is where the length
byte will be inserted.)

#19 EXPECT (EXPECT will wait for 19 characters or a carriage
return, whichever occurs first.)

SPAN @ TEMP Cl (Immediately after EXPECT is executed, SPAN
will contain the number of characters received
by EXPECT. This number wil be stored in the
first byte of the TEMP storage area to form a
length byte for the string.)

TEMP COUNT TYPE (This line will print out the string stored in TEMP.)
;ccr> ok <0>

CAPTURE ,ccr> Hello there.,ccr2. Hello there. ok <0>

Soe also: SPAN , -TRAILING , COUNT, TYPE , NUMBER? C tia er
G-115 1/0

0

!#$%&()+,-,0-9:;<- @A-Z [k]4_a-i-

FILL (a n b-)__ _
Format: address number-of-bytes-to-fill fill-character FILL

Action: Fills n bytes of memory starting at the specified address
with the specified byte value.

SIn the following example a 10 byte scratch area is created
in memory. Then, the first 7 bytes of the scratch area are
filled with the ascii value for a "C*. The effect of the FILL
operation is verified by typing out the contents of the
SCRATCH location:

CREATE SCRATCH 10 ALLOT 4.cr> ok <0>

SCRATCH 7 ASCII C FILL ccrz ok c0>

SCRATCH 10 TYPE <or> CCCCCCCTIJ ok <0>

See also: TYPE, ASCII

G- 16 0 e r

!#$%&()+ -. 0-9::- @A-Z([\]A_ "a-z~i}-

SFIND (a- a n)

Format: address-of-name-string FIND

Action: Searches the dictionary, using the current dictionary search
order, for the name specifed in the string whose address is
on the stack. The first byte in the name string is the length
byte. If the search is successful, FIND returns the link
field address of the word and a true (non-zero) flag. The flag
is al if the word found is IMMEDIATE and a -1 i the word is
not IMMEDIATE. If the search is unsuccessful. FIND leaves
the original address of the name string and a false (0) flag.

ExamfiDJ The following stack notations show the three possible
FIND results:

(address - address 0) NOT FOUND
(address - LFA -1) FOUND, NOT IMMEDIATE
(address - LFA 1) FOUND, IMMEDIATE

EXIST? will take the next word from the input stream and will use FIND to determine
if the word exists in the dictionary:

EXIST?
32 WORD (Get the next word from the input stream.)
FIND (Try to FIND it.)
IF

" Yes" (If FIND returns a 1 or -1 on top of the stack
ELSE the word does exist.

" NO" (If FIND returns a 0 on top of the stack the
THEN word does not exist.)
DROP (DROP the address returned by FIND.)

NOTE: MACH 2 is a subroutine-threaded implementation. The conventional CFA
(code field address) does not exist. The FORTH-83 standard requires FIND to
return a CFA. The MACH 2 FIND will return the LFA instead.

Se also: ' , IMMEDIATE , ?INCLUDE"

Co G1piCoion
G-117

!* #$%& () + /0-9 ::< ?@A-Z [\] "a-z(_}-

FLUSH
Format: FLUSH

Action: Frees up all the block buffers. Writes all block buffers which
are marked as updated to disk and then marks all the buffers
as unmodified and available. SAVE-BUFFERS is used when
the block buffers need to be saved to disk.

FLUSH is called when BYE is executed.

ee

See Also: UPDATE SAVE-BUFFERS EMPTY-BUFFERS
G-118 1/0

#$%&() .+ .0-9 : >. ? @A-Z (\IA_'a-z()l-

* FORGET
Format: FORGET <name>
Action: Searches for <name> using the current dictionary search. If

<name> is found, <name> and all words added to the dictionary
after name, regardless of vocabulary, are deleted from the
dictionary. If <name> is not found an error message is issued.

FORGET performs the following actions:

1. Reclaims the code space for all forgotten definitions.

2. Reclaims the names space corresponding to all
forgotten definitions.

3. Reclaims the variable space corresponding to all
forgotten variables.

4. Removes any forgotten vocabularies from the
list of known vocabularies (all words in the vocabulary
are also forgotten.

See also: EMPTY

Di n'ry
G-119 Ma age ent

IL

! * #$%& (" + ,-./0-9 : 9@A-Z [\A .a-z(i

FORTH
Format: ONLY FORTH or ALSO FORTH

Action: FORTH is the vocabulary which contains all words which
make up the FORTH kernel.

When used with ONLY, FORTH will become the only
vocabulary included in the current search order.

When used with ALSO, the FORTH vocabulary will be
appended to the current search order. This will cause FORTH
to become the transient vocabulary (the vocabulary which is
searched first). Any other vocabularies in the search order will
be searched after the transient vocabulary. WORDS will only
display the words in the transient vocabulary and the words
used to specify the search order when executed.

Example. To specify a search order in which the ASSEMBLER vocabulary
will be searched first and the FORTH vocabulary second:

ONLY FORTH <cr2'ok <0>
ALSO ASSEMBLER -cmrok <0>

The word ORDER will display the current search order and
the vocabulary to which new definitions are being appended:

ORDER -cm-
Search Order " ASSEMBLER FORTH
Definitions : FORTH
ok <0>

To make the FORTH vocabulary the only vocabulary which
is searched :

ONLY FORTH -ccrv, ok <0>

See also: ONLY , ALSO , ORDER , DEFINITIONS D o

G-120 Ma age _ent

*'FO RTH-83 !+
0-9 < @A-Z[\]A_

Format: FORTH-83
Action: Verifies that the FORTH-83 standard is supported.

Exampl FORTH-83 <crm 32-bit Forth 83 ok <0>

G-121

$ % #$& + 1) 0 ., -9 > !-g•;< ?@A-Z [\IA_-' a-zt I I-

HERE a______
Format: HERE

Action: Pushes the address of the next available dictionary location
on the stack.

Examplt The HERE pointer is incremented by all words which add items
to the dictionary:

HEX <cr> ok <$0>

HERE . ccr> 17806 ok <$o>

DUMMY ; -ccr=, ok <$0> (Because the dictionary headers are)
(separated from their corresponding run-time)

HERE . <or:,17808 ok <$0> (code, the HERE pointer was only incremented)
(by 2 bytes by the definition DUMMY. These two)
(bytes are required to compile the;)

10 ALLOT <crx- ok <$0> (ALLOT is used to allocate space in the)

HERE . <cr> 17818 ok <$0> (dictionary.)

300 W, <crmok <$0> (All oftheocomma" words (C,. W. and,) lay)
HERE . <cr3 17820 ok <$0> (a value into the dictionary and advance)

(the HERE pointer accordingly.)

See also: ALLOT, , , C, W,

Dic-ion ry
G-122 Mar age ent

#$& +() ,-.10-9 < ?>@A-Z \]A a-z(Il-

* HEX
Format: HEX

Action: Sets the current tasks number base - which atfects
all number input/output operations - to hexadecimal.
A $ sign is included in the stack depth indicator when
the current base is hexadecimal.

Example
DECIMAL -=cr3ok <0>
10 -cr3ok <1>

HEX <crnok <$1>

.cr> A ok <$0>

HEX -cor>ok <$0>

: NUMBERS CR 10 0 DO I LOOP ; ccrok <$0>

NUMBERS ccr>

0123456789 A B C D E F ok <$0>

The definition of HEX is -

DECIMAL ccr3 ok <0>

: HEX 16 BASE ! ; <crm o0. <0>

See also: DECIMAL, BASE , BINARY

Nu br
G-123 1/0

'#$%&'()+,-.0-9";< > ?@A2Z\,"-{}

HOLD -

Format: 4... .c HOLD...

Action: inserts the character whose ASCII value is on top of the stack
into the next available position in the formatted ASCII string
being constructed. HOLD must be used within <# and #>.

R In the example used in the # glossary entry, HOLD was
used to insert a decimal point and a dollar sign into the
formatted strings produced by $String :

$Strlng (n-) -o # # ASCII . HOLD #S ASCII S HOLD 6.TYPE ; ,Ccr•,ok <0>

74638 SString -ccr> $746.38 ok <0>

DATE uses HOLD to insert the backslash character into a formatted string:

DATE (n-),,###ASCIlI HOLD ##ASCII / HOLDe# #- TYPE ;Ccr2 ok <0>

100961 DATE <cr3 10/09/61 ok -.0>

A formatted string is always built from right to left (from higher to lower memory locations
in the PAD. Each new digit in a formatted string is placed in the next lower byte location
in the PAD:

k-PAD PAD + 84 bytes--

I I 6I1

This diagram shows the formatted string under construction. The backslash
has just been inserted by HOLD into the date string.

S"e•• € #S ,SIGN S-, Num ea

G-124

0

!"#$%& ()"+ ,-. 0-9 > ? @A-Z [A_ "a-z(I)}-

Format:

Action: When inside of a DO... LOOP or DO... +LOOP, I puts
the current loop index value on the parameter stack.
A more general description is that I is moving a copy
of the top of the loop stack to the parameter stack.
However, the word R@ (which also moves a copy of
the top of the loop stack to the parameter stack) is
usually used to perform this function when outside
of DO loops.

i u m pl e e N U M B E R S 5 0 D O I . L O O P

NUMBERS ~c~O1 2 34 ok

Parameter and loop stack Parameter and loop stack
right before DO: right after DO:

P Loop Param Loop

Paramater and loop stack El Parameter and loop stack
after 4 times through loop: after loop completed:

Param Loop Param Loop

So* also: R@ ,R, R3..V P ogr m
G-125 Sot. re

0

! #$%&'() + -. 0-9 >; . ? @A-Z [\]"_ 'a-z{I}-

"i-tick"

Format: r

Action: In the general case, I' puts a copy of the second item on
the loop stack on the parameter stack. When used
inside of a loop, r places the limit value (which wig be the
second item on the stack when a DO loop is executing)
for the loop on the parameter stack.

m This example will generate and print one row of a
multiplication table:

*TABLE (The index of the loop
CR is multiplied by the
11 1 DO limit of the loop and

I r CR 4- the result pintedon
LOOP ; -crc ok <0> the screen each time

through the loop.)

*TABLE cr> 11 22 33 44 55"j77 88 99 110 ok <0>

The loop stack at this point
would be:

(Loop index) 4-- (I gets this value.)

(Loop limit) (r gets this value.)

Loop Stack

See Also: DO, LOOP, +LOOP, ,1

St uct re

IO

#$% () + -. /0-9 < > ? @A-Z 7]A "a-z{(I}* IF (_: _ __ _ __.__

Format: IF may be used in two different formats:

flag
F

(code executed if flag passed to IF is true (non-zero))
THEN
(code which is always executed)

or flag
F

(code executed if flag passed to IF is true (non-zero))
ELSE

(code executed if flag passed to IF is false (zero))
THEN

(code which is always executed)

Action: IF is the first part of the IF...THEN or the IF...ELSE...THEN
program control structures. IF expects on the stack a
flag which indicates whether or not the code immediately
following the IF should be executed.

S2 CONSTANT VERY <cr2 ok <0>

FAREWELL (n -)
." Have a"
VERY •
IF

." very"
THEN
." good day I" ; -ccr. ok <0>

1 FAREWELL <cr3, Have a good day! ok <0>

3 FAREWELL <ccm Have a very good day! ok <0>

See Also: ELSE ,THEN P m
G-127 S r re

luctre

0 c

!"#$%& () +,- 0,9 : -> . A-Z[\A_'a-z{I}

(instruction-list"

Format: start-address instructions-to-disassemble IL
Action: Symbolically disassembles n instructions starting

at address a.

Examnle: IL can be used to disassemble user-defined words
and MACH2 kernel words. Note in the disassembly of
the user-defined word 'Test' that user references to
MACH2 kernel words are compiled as 'JSR -xx(A6)'
instructions. The '-xx' is the offset from the address
in the A6 register to the jump table entry for the kernel
word being referenced. A user reference to a kernel
word will always be compiled as a 'JSR' through the jump
table. Note also that '.- or ' string data are displayed
properly:

* Test (-n) 3 4500 * ." string" ; ccrN ok<0>
Test 8 IL -cn.

055230: MOVEQ.L #$3,DO
055232: MOVE.L 00,-(AS)
055234: MOVE.L #$1194,-(A5)
05523A: JSR $-7C5E(A6)
05523E: BSR.S +$A $55248

DC.B 6
DC.B string'

055248: MOVE.tL (A7)+,-(A5)
05524A: JSR $-TFEE(AE)
05524E: RTS
ok <0>

AS ER
G-128

• N~~~~ra !k ! #$%& '() * + , - . / 0-9 :; < -•?@A-Z []_"-{}

* IMMEDIATE
Format: : forth-definition ; IMMEDIATE

Action: Marks the most recently defined dictionary entry as a
word which will be executed when encountered during
compilation instead of being compiled during
compilation. Because immediate words are executed
during compilation, they never generate any compiled
code.

ExamlaLe:

SPEAK-NOW . Compiling.." ; IMMEDIATNE <ftrv

TEST-STATE
SPEAK-NOW ." Running.." ; ,crx Compiling.. ok <0>

(SPEAK-NOW is an immediate word
which will be executed whenever
it is encountered. In this case,
SPEAK-NOW was encountered during
the compilation of TEST-STATE and run.
When SPEAK-NOW is run it displays
this message on the screeen.)

TEST-STATE 4cr2 Running.. ok <0>

(When TEST-STATE is run, only the words which
generated code during compilation will be executed.
The compiled code which comprises TEST-STATE has
no memory of SPEAK-NOW because SPEAK-NOW was
executed during compilation and thus did not generate
any compiled code. This is why SPEAK-NOWs message
was not displayed when TEST-STATE was executed.)

Soo also: [COMPILE] ,] , [, STATE , SMUDGE

Co pilation
G-129 or

- $ % &'(+÷ -. 0-9 ?. ?@ A-Z[\I _'a-z{1}-

INCLUDE"9
include-quote-

Format: INCLUDE" occc"

Action: INCLUDE" will load the file named ccc. INCLUDE" may be
nested--i.e. the contents of a tile being loaded may also
contain an INCLUDE*. INCLUDE" performs the following
actions:

1. Looks to see if there is already a file open.

2. If a file is open, the file ID for that file and the position of
the current >IN pointer are saved on the loop stack.

3. INCLUDE" then tries to open the specified file. If it cannot
open the file a "Disk Error- message wiU result.

4. If the" ccc" file is found, it is opened and the loading
process is started.

Exampl The following example will open and load the file SIEVE.FTH:

INCLUDE" SIEVE.FTH" ,cr> ok <0>

After any loading process the word QUIT is executed. This means the parameter stack
will be cleared when the loading process completes. Any values left on the stack by
a file being loaded will be removed. If a file being loaded must pass values to another
part of the program it should do so by explicitly executing a word which passes
the desired values.

See also: LOAD , ?INCLUDE"

Stora~ e
G-130 1/0

!' #%&() + ,-.0-9 > ? @A-Z \]A 'a-z{I)-

Format:

Action: In the general case, J puts a copy of the third item on
the loop stack on the parameter stack. When used
inside of a nested loop, J places the index value for the
next loop outside of the current loop (which will be the
third item on the loop stack while the DO loops are
executing) on the parameter stack.

Exampl This example creates a few rows of a multiplication table:

*TABLE (Multiplying the
CR index of the inner
6 1 DO l oop (I)bythe

11 1 DO index of the outer

Outer Loop InneLoop L \ I j loop(WLOOP.
CR LOOP ; -cr> ok <0>

"TABLE ,•cr3,

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
48 12 16 20 MT 28 32 36 40
5 10 15 20 250 35 40 45 50ok <0>

The return stack at this point
would be:

(Index for inner loop) 6 ("I* gets this value.)

(Limit for inner loop) 11

(Index for outer loop) 4 ('J" gets this value.)

(Limit for outer loop)

Se Also: 00, LOOP , +LOOP, , Stack
G-131 •Contre
GS1 erct4 to

!"#$%& ')"+ ,-.1/ 0-9 : ,> ? @A-Z [\ '_"a-z{[j-

Format: KEY

Action: Waits until a key is pressed and then puts the ASCII value
of the character on the stack.

KEY -cm--

After KEY is typed in and a carriage return pressed, the
cursor still remains on the same line because KEY is running
at this point and waiting for a key to be pressed.

If an "M' is pressed KEY will put the ASCII value for an "M" on
the stack and complete running.

KEY -crm ok <0> (an V was pressed)

OUP -crm-ok <2>

< cr>77ok <1>

EMIT -rcm M ok <0>

See also: EXPECT, EMIT , ?TERMINAL

Chara er
G-132 C er

!•#$%& ')"+ , ./0-9 :;< > ? @A-Z [\ ' a-z{I}~

•LAST (-a)

Format: LAST

Action: Pushes the address of the variable which contains the link field
address of the most recent dictionary entry on the stack.

Co-pita ion
G-133 or

L E A V E ! # $ % & ' +, -. / 0 -9 : ; < • ? @ A -Z [\] " "a_ z {I) ~

Format: LEAVE

Action: Exits from within a DO loop. Transfers execution to the word
just beyond the next LOOP or +LOOP. The loop is terminated
and the loop index and limit are discarded from the loop stack.

LEAVE may appear within other control structures which are
nested within the DO loop structure. More than one LEAVE may
appear within a DO loop.

EIamDiL TERMINATE uses LEAVE to terminate the DO loop after
the index value has reached 7.

TERMINATE
10 0 DO

I . CR
(Using the equal . I 7C

comparison IF (The IF.. THEN
operator to see LEAVE program control
if the loop index THEN structure is
has reached 7.) LOOP ; -ccr> ok -<0> nested within

the DO ... LOOP

structure.)

TERMINATE <crioe

1
2
3
4
5
6
7 ok <0>

See Also: DO , LOOP, +LOOP, EXIT, IF , THEN

G-134ontrdIG.3 St uct re

f#S%&()+,-./0-9:;<>,? @A-Z[A]_ 'a-z{I}-

* LINK>BODY (al__-a)
"link-to-body

Format: link-field-address LINK>BODY

Action: Given a link field address, LINK>BODY will return
the corresponding parameter field address.

S"e also: BODY- K i-l'-"-1
CoG N ion

G-135 o

L IS (- $ % & ') + , .0-9 ::< > ? @ A-Z [\]A _a-z {I ~ (

Format: block-number LIST

Action: Displays the contents of block n of the current lite
on the screen.

Note About Current Files:

In MACH2 there is a system variable called FILEID. Any FORTH Storage I/O words which
interact with open files will look in this location prior to their actions to determine which
file they should be operating on. If a zero iS stored in FILEID it means that there is currently
no file to operate upon. Words such as LIST, which determines which file it should
list from by looking in FILEID will return a "No file specified... error message if used when
a zero is found in FILEID.

If a non-zero value is stored in FILEID it is assumed to be a file reference value which
uniquely identifies which file should be operated on. The file whose file reference number
is stored in FILEID is called the current file. The MACH 2 file interaction words (BLOCK,
BUFFER, LIST, LOAD) will perform their actions on the current file.

After using $OPEN to open a file, you can make the file the current file by storing the file
reference number returned into FILEID:

DECIMAL -'¢r3ok <0>
4 Fll01D WI <cro ok <0> (Storing a 16-bit file reference number

into FilelD. Now the file corresponding
to this file reference number will be the
current file.)

Now LIST could be used to list the contents of a block in this current file.

Se. also: LOAD
StoraC e

G-1361/

!'1 %& () +,- 10-9 : <- ?@A-Z[\' '-{}

Format: n UTERAL

Action: During compilation, LITERAL takes the number on top of
the stack and compiles it (in FORTH compiled numbers
are referred to as Rterals).

Examp:.I The following example shows a common use of LITERAL:

: SECS/YEAR [365 24 * 60 * 60 * I LITERAL ; ,crmok <0>

SECS/YEAR is a value to be used often in a program. Instead of having to calculate
the number of seconds in a year each time the program needs the value, SECS/YEAR
calculates the value only once-during compile time--and lays the value in the definition.
This method has two benefits. One is that it reduces execution time. Every time
SECSIYEAR is referenced it pushes the pre-compiled value on the stack, it does not
have to perform any run-time calculations. The second benefit is increased program
readability. The above definition of SECS/YEAR is much more readable than the
following definition which simply includes the precalculated value.

SECSIYEAR 31536000 ; ccra ok 4>

See also: J,[

Co lao
G-1 37 orc

LO A D --(&n' () # + .0-9:; > - ? @A-Z [\1A "az{I_ -

Format: block-number LOAD

Action: Uses BLOCK to copy the specified block from storage
to a block buffer in memory if it is not already in memory.
LOAD then redirects the interpreter so that it interprets
words in the block buffer rather than words in the input
message buffer. When all of the words in the block
buffer have been interpreted (LOADed), the interpreter
is switched back to interpreting words from the input
message buffer. Operates on the currently open file.

Since source files in MACH 2 are arranged as text files
rather than in block-size screens, the word LOAD is not
usually used to load files. The word INCLUDE* would be
used to load a file from within a program.

See also: LIST

G-138

! '#$%&'() +.-. 0-9::<-> ? @Az [k] A_'.a-z i-

* LOOP
Format: limit index

DO
(code to be executed each time through loop)

LOOP

Action: LOOP is the smart half of the DO... LOOP program control
structure. LOOP expects to find a limnit and an index on
the loop stack. The number of times the loop will be
executed is determined by the limit and index using
the formula: limit - index - # of loops. Each time LOOP
is executed it increments the loop index by one and compares
the new index value to the limit value. It the index is
less than the limit the loop will be executed again. If
the index is greater than or equal to the limit, LOOP will
terminate the loop by removing the limit and index
from the loop stack and allowing program execution to
continue on to the code following the LOOP.

E&MD1% : NUMBERS 5 0 DO I . LOOP ;ccr ok <0>
NUMBERS <crN0 1 2 3 4 ok <0>

The effect of LOOP -

Loop stack before Loop stack after Loop slack after
first LOOP: first LOOP: last LOOP:

Index aF] Index

Limit 5 Limit

Se"also: 0O,LOOP,+LOOP ,I, Ji,J
G-139 tSrePt c re

#$%/&'() +.-. 0-9 ?: . ?@A.Z[] A "a-z{(}

_EX1 - 2 long-extend"

Format: 16-bit-value LEXT

Action: Extends the word-length (16-bit) value in the lower two bytes
of the number on top of the stack into a long-word (32-bit)
value by copying bit 15, the sign bit for a word-length value,
to bits 16-31 of the long-word value.

Example- HEX <cr> ok <$O>

FF89 LEXT . ccrv -77 ok c0$>

89 LEXT . ,c,:¢r89 ok S0M

G-140It

M A C H . $ % &) + - 0 -9 :< ? @ A -Z [% I A _ 'a-z {

Format: MACH

Action: Used to toggle the MACH bit on the last word defined (its use
is similar to IMMEDIATE or SMUDGE). If a word with its MACH
bit set is encountered during compilation all of the assembly
language instructions which comprise the word will be laid
into the definition being compiled. Normally, a jump to the
executable code for a word (JSR) would be compiled. This
can be used to increase speed and, at times, save space.

Look in the appendices for a list of precautions to observe
when using MACH.

See also: IMMEDIATE , SMUDGE Co Pita Ion
G-141

V#$%&)+,-. 0-9 : > ??@A.Z[\4A_'a.z{I-

Format: MACHMODULE <main-word> <module name>

Action: MACHMODULE creates user trap modules to be
shared by MACH2 programs and applications.
MACHMODULE should be used after the code to be
placed in the module has been located into memory.
<main word> is the word which will be run when the trap
module is later accessed. <module name> is the name
for the module.

When MACHMODULE is executed MACH2 takes all
code in the users code area and writes it out to a new
trap rodule with the given name. After MACHMODULE
has completed, MACH2 will return to the OS-9 shell.
At this point you may perform a directory listing to see
that the new trap module does exist.

S". also: ASSIGNMODULE , TCALL S'9

G-142 In %e

0

S'#$%&'(+,..0-9":< > ? @A-Z[\]k'A"a-z(t}

MAKEMODULE
Format: MAKEMODULE <main-word> cmodule name>

Action: MAKEMODULE creates user trap modules to be
shared by non-MACH2 programs and applications.
MAKEMODULE should be used after the code to be
placed in the module has been located into memory.
<main word> is the word which will be run when the trap
module is later accessed. <module name> is the name
for the module.

When MAKEMODULE is executed MACH2 takes all
code in the users code area and writes it out to a new
trap module with the given name. After MAKEMODULE
has completed, MACH2 will return to the OS-9 shell.
At this point you may perform a directory listing to see
that the new trap module does exist.

Sea also: ASSIGNMODULE , TCALL

G-1 43 In er e

!"#$%& ')",.,-./0-9 :;<=> ? @A-Z [\]A_ "a-z{I}-

MATH0
Format: ONLY MATH or ALSO MATH

Action: MATH is the vocabulary which contains all of the floating
point math words.

When used with ONLY, MATH will become the only
vocabulary included in the current search order.

When used with ALSO, the MATH vocabulary will be
appended to the current search order. This will cause MATH
to become the transient vocabulary (the vocabulary which is
searched first). Any other vocabularies in the search order will
be searched after the transient vocabulary. WORDS will only
display the words in the transient vocabulary and the words
used to specify the search order when executed.

Examee To specify a search order in which the FORTH vocabulary
will be searched first and the MATH vocabulary second:

ONLY MATH ,ccrl" ok <0>
ALSO FORTH -cr ok <0>

The word ORDER will display the current search order and
the vocabulary to which new definitions are being appended:

ORDER -crm
Search Order : FORTH MATH
Definitions : FORTH
ok <0>

To make the FORTH vocabulary the only vocabulary which
is searched :

ONLY MATH -cmr ok <0>

See also: ONLY , ALSO , ORDER , DEFINITIONS Di o rY

G-144 Ma age ent

0

$#%& ()',- ./0-9 :<- ? @A-Z [\]"_ a-zI)-
S~ MAX (nj n2 - nQ

Format: nl n2 MAX

Action: Compares the two numbers on top of the stack and
leaves the greater,

Exam~le
5 10 MAX <cr3 ok <1> 5 -5 MAX .ccno ok cO>

ccr. 10 ok <O> ccr. 5 ok <0>

5 .5

For Assembly Lannuaae Programmers:

CODE MAX (nl n2 - n3)

MOVE.L (A5)+,DO

CMP.L (A5),DO

BLE.S @1

MOVE.L O0,(AS)

@1 RTS

END-CODE

Sao also: MIN

Com on
G-14S O r or

0

!'#$%& ()+ <./0-9 <-> ? @A-Z [_ 'a-z(1) -

M I.(n n2 - nQ)

Format: n1 n2 MIN

Action: Compares the two numbers on top of the stack and
leaves the lesser.

Exam~le
38 42 MIN ccr€o ok <1> 38 37 MIN ,ccnpok <1>

.ccr3 38 ok <0> . ccr. 37 ok <0>

For Asserrlv Language Proorammers:

CODE MIN (ni n2 - n3)

MOVE.L (A5)+,DO

CMP.L (A5),DO

BGE.S @1

MOVE.L D0,(A5)

@1 RTS

END-CODE

See also: MAX Co on

G-146 O eraor

$ % -$ &'(+,-•/ 0-9 > , @ A-Z []A_'a-z{I}

MOD ni n2 - n3)

Format: nf n2 MOD

Action: Divides nl/n2, leaving the 32-bit remainder from the
division on the stack.

ý:xmol 25 7 MOD <cr> ok <I>
<cr> 4 ok <0>

See also: /MOD , */MOD

Ar th
G-147 44rao

$ $%& 0) + ,-./0-9 : ,> ? @ A-Z [\]A_ a-az(f

NEGATE -(-)_____

Format: n NEGATE

Action: Changes the sign of the number on top of the stack (2's
complement). The negatio, of n - 0 - n.

ExamDl 3 NEGATE <cr> ok <3>

. rM -3 ok <0>

For Assemblv Lan, jage Proarammers

CODE NEGATE (n - -n)

NEG.L (AS)

RTS

END-CODE

MACH

See also: ABS , DNEGATE

Ar hme Ic
G-148 0 ¶erato~r

!' $% '('+ -. 0-9 : < > ? @A-Z [\]'_'a-zfi}-

* ._NO_._T__(nl " n2)

Format: n NOT

Action: Takes the one's complement of the number on top of the stack.

,xam]DJL BINARY <cr> ok <%0>
10111101 NOT <cr:ok <%o>

<cr> 1000010 ok c%0>

For Assembly Lanouage Proarammers

CODE NOT (ni - n2

NOT.L (AS)
RTS

END-CODE
MACH

Se also: AND , OR , XOR O gi"
G-149 0 r

!'$ % & +) 1-0-9:;<-> ? @A-Z[f A_ .a-z{-

N P (name-pointer

Format: NP

Action: Variable which holds the pointer to the next
available spot in the names space.

0

See Also: HERE , VP

Dicinry
G-15O Ma age1• ent

0

$%& () , -. 0-9 @- ?@A-Z [(JA_'a-z(I)-

*) NUMBER? (_nf)

Format: address-of-string-to-be-converted NUMBER?

Action: Tries to convert an ASCII string to a binary number with
regard to the current number base. NUMBER? expects on
the stack the address of the ASCII string to be converted. The
first byte of the string, normally the length byte, is skipped
over by NUMBER? but must be included. The last byte in the
string must be a null or a space. If the conversion
is successful and either valid punctuation (commas, periods,
back slashes, or semi-colons) or no punctuation is found in
the string, a 32-bit value will be put on the stack. If the
conversion is unsuccessful, usually due to invalid punctuation
or characters within the string, an error message is issued.

The string may contain a preceding minus sign.

Exampl In the following example, EXPECT is used to put a number
string into a storage area. NUMBER? takes the address of
this storage area and converts it contents to a numeric value:

VARIABLE NumStrlng 20 VALLOT ,ccr- ok <0>
NumStrlng 1+ 19 EXPECT -ccrv, 123,45<ecrv ok <0>

NumStrlng NUMBER? -cCrN, Ok <2>
, cF. -1 12345 ok <0>

Notice that the first byte of the storage area was not used since NUMBER? will ignore
it. Also, a comma was included in the string entered but NUMBER? did not complain
since a comma is a valid punctation mark.

NOTE: MACH 2 supports 32-bit integers. Punctuation does not generate 64-bit
double length numbers. All numbers are 32-bit.

See also: CONVERT , BASE Nr

G-151

!•#$%& ')"+,- 0-9 •;< ?@ A-Z [\111_ "a-z{I}-

O F (ni n2 - n(.ai))__

Format: OF is used in the following format:

CASE
n OF (code executed if n is matched) ENDOF
nI OF (code executed if ni is matched) ENDOF
n2 OF (code executed if n2 is matched) ENDOF

nn OF (code executed if nn is matched) ENDOF
(code executed if no match was made above)
ENDCASE

Action: OF marks the beginning the OF.. .ENDOF structure
used within a CASE statement.

0

See also: CASE , ENOOF, ENDCASE

P ogr m
G-152 S ontre

lre

! " *$%& (" +,- 0-9 :;<-> ? @A-Z 1\14_ "a-z{I}~

* ONLY
Format: ONLY vocabulary-name

Action: Makes the vocabulary specified by name the only vocabulary

searched in all subsequent dictionary searches. Only the
words in the specified vocabulary and the words used to
specify and change the search order will be found after the
use of ONLY. ALSO may be used to append other vocabularies
to the search order.

ONLY OS-9 vccr ok <0>
WORDS 4crio
$CREATE
$DELETE
$CLOSE
$OPEN
$WRITE
FILEID

V40ROS After ONLY OS-9 these are the only words
which will be able to be found in any subsequentALSO dictionary search.

ONLY
SEAL
DEFINITIONS
IL
MATH
05-9
ASSEMBLER
FORTH
ok<&6

3 DUP -cr> EUPX? (The FORTH vocabulary is not being searched so
the system does not know about DUP.)

ALSO FORTH ccr> ok <0> (Now the FORTH vocabulary will also be searched.)

3 DUP ,ccr> ok <2> (AAnd now the system is able to find DUP in the
dictionary.)

See also: ALSO , ORDER

Di ry
G-153 Mar age ent

8 $%& ()"+ ,-./0-9 :;< -> ? @A-Z [\]4_ 'a-z(I}-

,.O RB(n1 n12 - n3,)

Format: n1 n2 OR

Action: Performs the bit-by-bit logical OR of ni with n2. Leaves
the result on top of the stack.

E amD.l The truth table for OR is:
A B AOR B

0 0 0
0 1 1
1 0 1
1 1 1

BINARY <cr. ok <%0>

10101010 <cr> ok <%1>

00001111 OR <cr.ok <%1>

. <cr> 10101111 ok <0/90>

DECIMAL -cr> ok <0>

For Assemblv Laguage Promrammers:

CODE OR (ni n2 - n3)

MOVE.L (AS)+,DO

OR.L DO,(A5)

RTS

END-CODE

MACH

See also: XOR, AND, NOT, BINARY, DECIMAL

G-154 0 rs

() - /0-9 :< ? @A-Z [\]A_ a-z~j)-

* ORDER
Format: ORDER

Action: Search order utility which displays the names of the
vocabularies in the current search order and the name
of the vocabulary to which new definitions are currently
being appended.

Example, This is the initial search order:

ORDER 4cr>
Search Order : FORTH
Definitions : FORTH
Ok <0>

Sao also: ONLY , ALSO , DEFINITIONS , WORDS

G-155 Tool

$s(9

00-9
:;< .> @ A-Z [\] ,_'a-z {I}-

Format: ONLY OS-9 or ALSO 06-9

Action: OS-9 is the vocabulary which contains all OS-9 specific
words.

When used with ONLY, OS-9 will become the only
vocabulary included in the current search order.

When used with ALSO, the OS-9 vocabulary will be
appended to the current search order. This will cause OS-9
to become the transient vocabulary (the vocabulary which is
searched first). Any other vocabularies in the search order will
be searched after the transient vocabulary. WORDS will only
display the words in the transient vocabulary and the words
used to specify the search order when executed.

p To specify a search order in which the OS-9 vocabulary
will be searched first and the FORTH vocabulary second:

ONLY FORTH -ccr3 ok <0>
ALSO OS-9 -crmok <0>

The word ORDER will display the current search order and
the vocabulary to which new definitions are being appended:

ORDER -crc O
Search Order: OS-9 FORTH
Definitions : FORTH
ok <0>

To make the OS-9 vocabulary the only vocabulary which
is searched :

ONLY OS-9 -ecr ok <0>

See also: ONLY , ALSO , ORDER , DEFINITIONS D o

G-156 Marage ent

O

O ER. nl n2 - ni n2 nl)

Format: ni n2 OVER

Action: Puts a copy of the second item on the parameter stack
on top of the stack.

Example* 5 6 OVER ccrý ok <3>

.S -ccr3 5 6 5 <- TOP ok <3>

6 5

For Assembly Lanouage Programmers:

CODE OVER (nl n2 - ni n2 ni

MOVE.L 4(AS),*(AS)

RTS

END-CODE

MACH

See also: DUP, DROP, PICK , ?DUP

G-157 Ma n

PAD -a
Format: PAD

Action: Puts on the stack the address of the first byte of the PAD
scratch area in memory. The PAD should be treated strictly
as a temporary scratch area. It should not be used for storage
since many FORTH words use the PAD while performing their
operations.

Exampl The PAD may be used to hold temporary input strings

PAD 10 EXPECT ,ccr> ABCDEFGHU ok <0>

PAD 10 TYPE 4fcr> ABCDEFGHIJ ok <0>

Keep in mind that the number formatting words (which are used for all numeric
output commands) use the upper portion of the PAD.

See also: c# , EMIT

Syste'/Local
G-158 Vi .a e

! * # $ %& ')"+ ,- 0-9 : <-> ? @ A-Z [\]kA "a-z{}

0 PICK n - n)

Format: n PICK

Action: Moves a copy of the nth item down on the stack (where
n - 0 refers to the iem on top of the stack) to the top of
the stack.

Eample: 10 21 32 43 54 65 76 <crok <7>

.S <cr> 10 21 32 43 54 65 76 <- TOP ok <7>

6th Rem 2nd tem 0th item

2 PICK <crlok <8>
.S -'cr> 10 21 32 43 54 65 76 54 <- TOP ok <8>

0 PICK -.cr> ok <9>

.S ,crc> 10 21 32 43 54 6S 76 54 54 <- TOP ok <9>

(Note that 0 PICK is equivalent to a DUP.)

Stack before PICK - Stack after 2 PICK - Stack after 0 PICK -

54

5 4 Z54

f76 76 76
65 65 0065

54- 54 54

43 43 43

32 32 32

21 21 21

110 10

See also: DUP , DROP , OVER , ROLL

RtacI
G-159 Ma ipl ion

QUERY
Format: QUERY

Action: Transfers characters from the keyboard into the terminal
input buffer until either 72 characters or a carriage return
is received. QUERY sets the >IN system variable to zero and
the sets the #TIB system variable equal to the number of
characters received.

ExamoJq; The definition of QUERY is:

QUERY

SPAN @ R Since QUERY calls expect it will corrupt the current
value of SPAN. Here the current value of SPAN is
being stored temporarily on the loop stack.

TIB 72 EXPECT EXPECT puts up to 72 characters in the TIB.

0 >IN ! A zero value in the AIN system variable indicates that
the current input stream is the TIB.

SPAN @ #TIB I The system variable SPAN will contain the actual
number of characters received by EXPECT. This
number is stored in the system variable STIB. WORD
uses the contents of ETIB to determine when it has
finished processing words in theTIB.

RM SPAN I ; Restoring the previous SPAN value.

See also: EXPECT, KEY , #TiB , AlN , TIB, QUIT

Caac er
G-160 1/0

* QUIT
Format: QUIT

Action: QUIT is the word which resets the system (except for the
parameter stack) and starts FORTH running again. When
QUIT is executed, it clears the return stack and puts the
system in the interpreting state. The system at this point
is waiting for keyboard input. The "ok" message will not
be seen until a word (or a series of wo-,s) have been
successfully executed.

,xam]ils The basic definition of QUIT is as follows:

QUIT
BEGIN

(clear return stack)
QUERY

(INTERPRET the Input stream
."ok" CR

AGAIN
<cr> ok <0>

0

See also: QUERY
P I

otru r

$ % $& ')•+,-/ 0-9 > < ? @ A-Z A\• "a-zo) -

R > n) "r-from *

Format: R>

Action: Moves the number on top of the loop stack to the top of
the parameter stack.

ExamplDIL 5 3R -cr3 ok <0>
R3 . <ccr>5 ok <0>

Paramater stack and loop Parameter stack and loop
stack before R> - stack after R> -

Parameter Loop Parameter Loop
Stack Stack Stack Stack

For Assembly LarMuage Prorammers:

CODE R, (n)

MOVE.L D6,-(A5)
MOVE.L D5,D6
MOVE.L -(A3),D5
RTS

END-CODE
MACH

See also: 2R , R@, I, J

""ac
G-1 62 Maripult!on

it0

*"$%&()+,- 0-9:; >- ? @A-Z[\ 'a-zjI}-

"r-f etch

Format:

Action: Moves a copy of the top of the loop stack to the top
of the parameter stack. R@ and I are equivalent but
I is usually used only within DO loops.

ExamDI.L 5 :R ccr> ok <1>

R@ . -ccr.> ok <0>

Parameter stack and loop Parameter stack and loop
stack before R@ - stack after R@ -

Parameter Loop Parameter Loop
Stack Stack Stack Stack

For Assembly Lanauage Programmers:

CODE R@ (- n)

MOVE.L D6,-(A5)
RTS

END-CODE
MACH

See also: I , J , R>,R cR

Rac
G-163 Mar r1pu Ition

RECURSIVE
Format: :<name> RECURSIVE ... ,<name>...,

Action: Immediate word which is used within a recursive colon
definition to clear the smudge bit of the word being defined
so that it may reference itself.

ExaUmple The following example is a recursive evaluation of a
Fibonacci number. This example also makes use of
local variables.

Fib RECURSIVE (n - (Clears the smudge bit of Fib so that Fib may)
n 2 - (reference Fib recursively and)
IF (specifies that I named input parameter

1 (-initialized local variable - is set up for this)
ELSE (definition.)

n 1- Fib
n 2- Fib

THEN ; (normally clears the smudge bit for a completed
definition. In this case RECURSIVE has already
made the word visible so has no additional effect.)

See also: : , , SMUDGE

CO ipiiaJon
G-16 orc

I IREPEAT
Format: BEGIN

(code to be executed each time through loop)
flag
WHILE

(code to be executed while flag is true)
REPEAT
(code executed when loop terminates)

Action: REPEAT marks the end of the BEGIN.. WHIL..... REPEAT
program control structure. When a true flag is passed
to WHILE, code between the WHILE and REPEAT will be
executed until the REPEAT is encountered. At the REPEAT,
program execution will be rerouted back to the code
which followý the BEGIN. If a false flag is passed to
WHILE the loop will be terminated by allowing program
execution to continue to the code which follows REPEAT.
Loop execution continues while the flag is true.

See Also: BEGIN , WHILE , REPEAT, AGAIN P m
G-165ontrd I

G-165 Stuct re

,=llB~ilmm,•~So N-iP e

#$ i%& +(,- 0-9 • > < ? @A-Z [\]A_ "a-z{(}I

ROLLm_________
Format: n ROLL

Action: Rotates the nth item on the parameter stack to the top
of the stack (where n - 0 refers to the item on top of the
stack.). N must be greater than 0.

0 ROLL is a null.
1 ROLL is the same as a SWAP.
2 ROLL is the same as a ROT.

Exampl 10 21 32 43 54 65 76 -cm-,ok <7>

.5 <cra, 10 21 32 43 54 65 76 ok <- TOP <7>

6th item 2nd item 0th item

3 ROLL •crl ok c7>

.S 4crl 10 21 32 54 65 76 43 <- TOP ok <7>
6 ROLL <cro ok <7>

.S cl> 21 32 54 65 76 43 10 <- TOP ok <7>

Stack before ROLL - Stack after 3 ROLL - Stack after 6 ROLL -

L76 -43 10

65 76 43

54 6o 5 76 o

4.3 5 65

32 32 54

21 21 32
10 10 21

See also: PICK , SWAP ROT

G.166 Mar tul I tion

RQL1ni n2 n3 - 2n3 nl) rote

Format: ni n2 n3 ROT

Action: Takes the third item on the parameter stack and Puts
it on top of the stack, shifting the two items that were
previously above it downwards.

Exmpl 3 2 1 ROT <cr> ok <3>

.S <or> 2 1 3 <- TOP ok <3>

e3

See also: SWAP, ROLL

tac
G-167 Mar ripu Ition

SAVE-BUFFERS
Format: SAVE-BUFFERS

Action: Writes all block buffers which are marked as UPDATE'd to
disk and then clears the update bit of all the buffers. The
buffers remain assigned to their file block. UPDATE and
SAVE-BUFFERS should be used frequently when making
changes to a file to avoid losing a large amount of work due
to an unexpected event such as power loss.

Eampl: Writing Data to a File

After opening a file and making the file the current file (see the BUFFER glossary page),
data may be written to the file in 1K (1024 byte) chunks.

The word BUFFER will assign one of the four available block buffers to the specified block
within the current file and will retirm the address of the block buffer in memory. Once you
have the address of this buffer you may write up to 1024 bytes of information into the
buffer In memory. When you have completed putting data into the buffer, you should use
UPDATE to mark the buffer as changed and then use SAVE-BUFFERS to have those
changes written out to the correct block within the current file. For example, to store 1024
bytes of information into the second block of the current file:

F1111K (bufaddr -
1023 0 DO

ASCII A bufaddr I + C! (Fill 1024 bytes with the letter k)
LOOP
UPDATE (Mark the buffer as UPDATEd.)
SAVE-BUFFERS ; (Save the changes to the file on disk.)

1 BUFFER FIII1K ,crcm (Ask for a buffer to be assigned to block
1-the 2nd block-of the file. Pass the
address of the buffer to Fill K.)

See also: FLUSH , EMPTY-BUFFERS , UPDATE , BUFFER

G-166 1/

* S9EAL
Format: SEAL

Action: Freezes the current search order and removes
the link to the words used to change the search
order.

DI t 'ry
G-169 Ma age ent

S G n n2 - n2).

Format: <# SIGN #>

Action: Uses the sign bit of the 2nd number on the stack to determine
if a minus sign should be inserted in the next available position
in the formatted ASCII string being constructed.

EumpIlL The word. , which prints out the signed value of the number on
top of the stack, uses SIGN:

(n-
DUP ABS (Duplicate the number and take the absolute value of the copy.

A positive value should always be passed to the number
formatting operators.)

.# #S (Start the number conversion process. Convert all digits
in the number to ASCII and insert them in the string.)

SIGN (Get the second number on the stack. If it is negative, insert
a minus sign at this point.)

#:o TYPE (Finish the number conversion process and TYPE out the
string.)

SPACE

The definition of SIGN is: 0
SIGN (ni n2 n2)

SWAP (Put the second value on top of the stack. The 2nd
number is the number used to specify the sign.)

0c IF (Is the number negative ?)

ASCII - HOLD (If it is, put the ASCII value for a '-'on the stack
and insert it into the string using HOLD.)

THEN ; (If it isn' negative, just exit.)

See also: -#, #, #S , HOLD,. Nr r
G.170

0

* SMUDGE
Format: SMUDGE

Action: Toggles the smudge bit of the most recently defined dictionary
entry. When the smudge bit is set, the definition is invisible
to any dictionary search. : (COLON) sets the smudge bit to
make the dictionary entry being built invisible until it has been
completed. This ensures that no half-built definitions are found
and executed. RECURSIVE clears the smudge bit of the
recursive definition being built so that the definition may
reference itself.

Examailo

:ADD-FIVE (n.) 5 +; SMUDGE cro ok 0>

t t t . SMUDGE toggles the current

sets the smudge ; clears the smudge state of the smudge bit. Since
bit so that ADD-FIVE bit when the definition ; has just cUGared the smudge
cannot be found is completed. Now bit, this SMUDGE maety again
until it is completed. ADD-FIVE may be so now ADD-FIVE may not be

found.found.

ADD-FIVE <cr> ADD-FIVE/-
(Since ADD-FIVE was made invisible by SMUDGE,

it could not be found in the dictionary search.)

The definition of RECURSIVE uses SMUDGE:

RECURSIVE SMUDGE ; IMMEDIATE ,=cr, ok <0>

See also: : , , RECURSIVE, IMMEDIATE

Co e ion
G-171 orc

! #$%& 0-9 < ? @A-Z [\]A_ a-z{I

SPACE
Format: SPACE

Action: Print one space.

Examala. The foii'wing word will print the numbers 1 through 10

out on a single line -

NUMBERS CR 11 1 DO I LOOP ; ok <0>

NUMBERS -crm

12345678910ok <0>

Compare the previous output to the output of the next word which uses
SPACE to insert two extra spaces between each number -

NUMBERS2
11 1 00 I . SPACE SPACE LOOP; .ccN ok <0>

NUMBERS2 -ecrN

1 2 3 4 5 6 7 8 9 10ok <0>

See also: SPACES , EMIT

Ctar
G-1 721/

* •SPACES._.)
Format: number-of-spaces-desired SPACES

Action: Prints n spaces.

Example, A high-level definition of SPACES is:

:SPACES (n-) 0 DO SPACE LOOP ; .ccrook <0>

STAIRCASE 10 0 DO I SPACES I . CR LOOP ; <cro ok <0>

STAIRCASE ccr3

0
1
2
3
4
5
6
7
8
9ok <0>0

NOTE: Because SPACES uses the DO...LOOP structure it will always produce at
least one space (even if passed a zero).

See also: SPACE , EMIT

Ct larac terG-1 73 1/0i

SPAN _ _ ___

Format: SPAN

Action: Puts the address of the system variable containing the
number of characters actually received during the last
execution ot EXPECT.

Ex.aJmlg]•: VARIABLE CHARS 10 VALLOT -ccr) ok <0>

CHARS 10 EXPECT -ccr> ABCDEF,=cro ok <0>

SPAN @ -cr> 6 ok <0>

See also: EXPECT

Syslm/Local
G-174 V 3 le

* SORT (nl - n2)

Format: ni SORT

Action: Takes the square root of the number on top of the stack
and returns the integer result.

Exampl 25 SORT ccr> 5 ok <0>
30 SORT ccr> 5 ok <0>

SORT will return a zero if it is passed a negative number.

0

See also:

Ar- -t--ic
G-175 0 e ra

STATE(-a)_

Format: STATE

Action: Puts the address of a variable which indicates the
state of the system (either compiling or interpreting)
on the stack. A non-zero value in the STATE variable
indicates compilation is occuring. A zero value in
STATE indicates that all input is being interpreted
and executed immediately.

Exam U : STATE@ STATE @ .; cr>. ok <0>

IMMEDIATE ,crzok <0>

STATE@ ,ccr>. 0 ok <0>

(Because the system is executing
words immediately, the STATE
variable contains a zero.)

CHECK-STATE STATE@ ; ccrz -1 ok <0>

(STATE@ is an immediate word, so
the contents of the STATE variable are
being examined during the compilation
of the word CHECK-STATE. The contents
of STATE at this time are non-zero,
indicating a compilation state.)

See also:],[

G-1 O

! * $$%& (° + , - . / 0-9 " ,> ? @A-Z [\]4_ 'a-Z{I}~

S,_SWAP (nI n2 -n2 nl)

Format: ni n2 SWAP

Action: Exchanges the top two items on the stack.

Exar1lLe 2 1 SWAP Mcr ok <2>

.S <cr> 1 2 -- TOP ok <2>

For Assembrl LaraQe Programmers:

CODE SWAP (ni n2 - n2 ni)

MOVE.L (A5)+,D0

MOVE.L (A5),-(A5)

MOVE.L DO,4(A5)

RTS

END-CODE

MACH

See also: ROT , ROLL 57"4
G-177 Mar ipijItion

T C A" #$% ',& ') '+ ,-• 0-9 > ? @ A-Z [\IA_ .a-z {I} .

TCALL
- trap-call

Format: TCALL <vector#>,<function code>

Action: Assembler word used to generate user trap calls. User trap calls
are used to access user trap handler modules and the OS-9 math
and CIO library modules.

TCALL should be followed by the trap vector number used to
access the module and the function code to be passed to the
module.

Trap vector #0 is reserved by OS-9 for calls to the kernel module.
Trap vectors #14 and #15 are used to access the OS-9 math
modules. MACH2 uses trap vector #13 to access the MACH2

disassembler/debugger trap handler module.

Exmple: A very simple trap handler module is created below to demonstrate
the use of TCALL. The module will add 2 to the function code
passed to it and return the result to the calling program.
MACHMODULE will return to the shell after it has finished creating
this new trap module:

: Simple (functioncode - functloncodo+2) 2.
MACHMODULE Simple SlmpleModule

The following commands should be typed after you
have re-entered MACH:

5 CONSTANT SimpleVector
" SimpleModule" 1+ SimpleVector ASSIGNMOOULE

: Alpha (- n) TCALL SlmpleVector,1
Setfa (- n) TCALL SimpleVector,2

:Gamma (n) TCALL SimpleVector,;

Alpha . ccr> 3 <ok>
Beta . <cr> 4 <ok>
Gamma . -cr> 10 <ok>

See also: OS9

G-178 In %e

! ' #$%& () + , ./0-9 ::< > ? @A-Z [\]A_ "-{}

0 THEN
Format: THEN may be used in two formats:

IF
(code executed if a true flag is passed to IF)

THEN

or IF
(code executed if a true flag is passed to IF)

ELSE
(code executed if a false flag is passed to IF)

THEN

Action: THEN marks the end of the IF.. ELSE.. .THEN or IF.R.THEN
program control structures. Program execution will
always be routed to the code following the THEN,
regardless of what flag is passed to the IF.

0

See Also: IF , ELSE

G-179ontrdI
G-179 StMCt re

0

T " #$%& () " 10-9 > ; ? @A-Z [\]A_ a-z(I)-

"t-i-•"

Format: TIB
Action: Puts the address of the text input buffer on the stack. The

text input buffer receivss all keyboard input. BLK, >IN,
#TIB and TIB are the four system variables responsible for
maintaining control of the input stream.

QUERY always puts incoming characters into the TIB.

0

See also: BLK , >IN , #iBS

Sys lemiLo cal
G-180 Varabe

0

Q • ! " #~~$%&'1• +, - 0-9 • <- ?@A-Z A\' "a-zl-

TIMER
Format: COUNTER... <words to be timed> ...TIMER

Action: Takes the contents of the variable initialized by
COUNTER and displays the execution time in
seconds and ticks. The time display is always
in DECIMAL. The previous base is restored
alter TIMER is finished.

So. also: COUNTER
FjORTHI

G-181 Tool

T U R N K E Y-#$% & (+ -0-9 " > ?@ A-Z [\IA_ 'a-z(I)-

Format: TURNKEY <main-word> <application name>

Action: Creates a complete stand-alone application with the specified
name which will run the specified FORTH word upon start-up.
The application may be run from the OS-9 shell.

The minimum application size is 6K. The application is given a
$4000 byte stack area (shared by all of the stacks) and a $4000
byte variable area.

Examle@ : <maln-word> ()

CR
"." Press 'R' for RED"

KEY ASCII R =
IF

" Red"
ELSE

"." Blue"
THEN
BYE

TURNKEY crnaln-word3, Colors .cem

After MACH2 returns to the shell you may type 'COLORS'
at the shell prompt to run the application.

The dictionary headers are not included in a turnkeyed application so the application
must not reference any FORTH words which require the headers presence. Also,
once an application has undergone the TURNKEY process, the dictionary is 'frozen.
No words which alter the dictionary (W, ALLOT and any other words in the compiler
segment) in any way may be used by the application program.

To make sure you are not using any compiler words in your application program store
a non-zero value in the system variable VERBOSE and then load your program. While
VERBOSE is 'on' warning messages will be issued whenever a word in the compiler
segment is referenced.

S" also: MAKEMODULE , MACHMODULE F o

G-182 or

'#$%&'(+ - 0-9 :< > ? @A-Z [\I"_ ýa-z(1)-

Format: address-of-characters #-characters-to-type TYPE

Action: Prints the n characters stored starting at the specified
address out to the current output device.

Exmple COUNT takes the address of a string on the stack and returns
the length of the string and the address of the actual first byte
in the string on the stack for TYPE :

"Hello there I" COUNT TYPE <crm Hello there! ok <0>

The number formatting word 0> also sets up the stack for TYPE:

PHONE# (n -)
4# * U # * ASCII - HOLD S # #Ub TYPE ; ccr3 ok <0>

4445678 PHONE# crc, 444-5678 ok <0>

See also: COUNT, 0> , PAD

G-183 1/0

,' %& () +. . 0-9 : <- @A-Z [\]A_'-a.z{I}

Format: u U.

Action: Prints the unsigned single-length number on top of the
stack on the screen followed by one space.

Examn.le U. pays no attention to the sign bit of the number on the stack:

HEX -ccr> ok <$0>

-2 U. -cr> FFFFFFFE ok <$0>

This is the definition of U. :

:U. (n) OS #z 8TYPE SPACE ;-crbok <0>

See also: .,SIGN ,#S

G-184 1/0

'#$%&()+,-.0-9 :< > ? @A-Z[(\]A_'.a-zt-

Q~u u2 1. 2f),
u-less-than

Format: ul u2 U<
Action: Compares the two unsigned numbers on top of the stack.

Returns a true flag if ul is less than u2, and a false flag
if ul is not less than u2.

Example: This example demonstrates the difference between using
the signed < and the unsigned U<.

HEX 4cr.ok <$O>

.1 A000 . . <cIr>AOOO -1 ok <$O>

-1 A000 - . cr -1 ok <$0>

-1 A000 U. U. ccr> AOO0 FFFFFFFF ok <$0>

-1 A000 U< <crc 0 ok 4$0>

See also: -, U. ,0

Comparison
G-185 O e r

0

#$% () - .0-9 < -> ? @A-Z [\] 'a-z(I)-_U.M_ (U1 U2 .U3)
"u-m-times

Format: ul u2 UM*
Action: Muftiplies two unsigned numbers and leaves the

unsigned result on top of the stack.

Example- HEX -cr. ok <$0>
FFFFFFFF 2 * ccr--ok 4$1>

.c>t -2 ok <$0>

FFFFFFFF 2 UM' -cr ok <$1>

.A •.cr 1 <- TOP ok <$1i

See also: U-, U.,

Ar fthmtic
G-186 0 w tr

! * #$ % &' () * + ,-./ 0-9 : ; < - > ? @ A-7 \A_.a-z(t}*U-M/MOD _1 U2 U3 U4_)
"u-m-slash-mod"

Format: ul u2 UM/MOD

Action: Divides ul by u2 and leaves the unsigned quotient on top
of the stack and the unsigned remainder below it.

Examplao In the first example signed division is performed. FFFFFFFF is a
-1 in signed arithmetic so -1 divided by 5 leaves a quotient of 0 and
a remainder of -1. The second example uses an unsigned division.
With unsigned division the FFFFFFFF is not treated as a -1 and the
results are a quotient of 33333333 and a remainder of 0.

HEX -ecr3 ok <$0>

FFFFFFFF 5 /MOD <cr> ok <$2>

.S <cr> -1 0 <- TOP ok <$20>

FIFFFIFFFF -0

FFFIFFFFF 5 UM/MOD <crv ok <$2,

.S -cr> 0 33333333 <- TOP ok <cr>

FFFFFFFF 0-b'

See also: UM*, /MOD, MOD , */MOD Ar t ic

G-187 0)jr

!"#$%& ')"+ ,-./0-9 > ? @A-Z [\]A_ 'a-z I}

11NTIL f~______
Format: BEGIN

(code to be executed while flag is false (zero))
flag
UNTIL

Action: UNTIL is the decision maker in the BEGIN.. .UNTIL
program control structure. UNTIL makes its decision
on whether or not the loop should be terminated based
upon the value of the flag passed to it. If the flag is true
(non-zero), UNTIL will terminate the loop by allowing
program execution to continue onto the code which
immediately follows the UNTIL. If the flag is false (zero),
UNTIL will reroute program execution to the code following
the BEGIN. Due to the structure of the BEGIN.. .UNTIL
loop, the code within the loop will always be executed at
least once.

See Also: BEGIN WHILE REPEAT, AGAIN P m
Gontrb/

G-188 S t re

* UPDATE
Format: UPDATE

Action: Sets the update bit of the most recently accessed block
buffer to indicate that the contents have been changed
and should be saved.

Ea e One way to make a change to a file:

"TestFile.FTH" 1 + 3 $OPEN .cmr 0 4 ok <0> \ Opening a read/vrite version of
\ the file.

4 FILEID ! <cr:. ok <0> \ Make the file the current file by
stonng its path number in FilelD.

2 BLOCK <cr>ok <1> \ This returns the address of the
first character in the 3rd block
of the current file.

100 + CCr> Ok <I> \ Add 100 to the address left by
\ BLOCK to get the address of
\ the 100th byte in the block.

33 SWAP C! UPDATE <cr> ok <0> \ Stornga33 in the 100th byte of
of the block and mark the most
recently accessed block-
block 2-as UPDATE'd.

SAVE-BUFFERS <crz ok <0> \ Writing all UPDATE's blocks to
the disk and clearing the
UPDATE bits.

UPDATE should be used after modifying a block buffer. Setting the update bit
guarantees that the buffer will be written to disk.

See Also: SAVE-BUFFERS , FLUSH

G 9

I $%&() , - 0-9 : > ? @A-Z [\]A_ a-z(I)-

VA LLO T (n) ."variable-allot"

Format: #bytes-to-allocate-in-variable-space VALLOT

Action: Allocates additional memory in the variable space for the
most recently defined variable by incrementing the variable
pointer, VP, by the specified number of bytes. Initialization
of storage locations allocated by VALLOT is left up to the
programmer.
It is very important to note the difference between VALLOT
and ALLOT. VALLOT allocates memory in the variable space
while ALLOT allocates memory in the dictionary space.

Exampl ?FREE may be used to see the effect on the variable space
of VALLOTing space in the variable space:

?FREE -ccrý. ok <G>
Code : 32688 Initial status of variable space.
Vats : 13390
Name 16290
ok <0>

VARIABLE ARRAY ,=cr i ok c0>
?FREE -tcr= ok cO>
Code: 32680 \ VARIABLE automatically allocates
Vats : 13386 \ 4 bytes of storage for a new variable.
Name : 16270 \ Notice that the amount of available
ok <0. \ variable space has decreased by

\ 4 bytes from above.

400 VALLOT -ccro ok <0>
?FREE 0cr> ok <0>

Code : 32680 \ The 400 VALLOT reduced the
Vars : 12986 \ amount of available variable space
Name : 16270 \ by 400 bytes.
ok <0>

Soo also: VP, VARIABLE e y
G-190 ra r

''#$ &'() +, . 0-9 :; @ A-z[\] A 'a-z{} -

* VARIABLE
Format: VARIABLE <name>

Action: Defining word which creates a dictionary entry using the
specified name and allocates 4 bytes of memory in the
variable space for the contents of the variable. The parameter
field of the new variable's dictionary entry contains its offset
into the variable space using the address in the A6 register
as a base. When words created by VARIABLE are executed,
the absolute address of their 4-byte storage location is
calculated using the address in the A6 register and the offset
and is pushed on the stack.

E e VARIABLE is used in the following manner:

VARIABLE SUM •-cr2ok <0>

10 SUM ! -ccriok <0>

SUM @ .ccra10 ok <0>

NOTE: VARIABLE generates IMMEDIATE words that
are state dependent. This characteristic allows variables
to increase their run-time speed by optimizing their
addressing modes at compile time.

See also: VALLOT , VP

G-191 r

! * #$%& &() ,./0-9 :;.> ? @A-Z [\]A_' a-zI

VERBOSE - ___ ___

Format: VERBOSE

Action: VERBOSE is a tri-state system variable which controls
the issuance of certain warning messages during compilation.
The chart summarizes the effects of VERBOSE:

VERBOSE ContentsEffect

Negative value Warning messages will be issued
whenever a word not allowed in a
generic, trap module is compiled.

Zero No action.

Positive value Warning messages will be issued
whenever a word not allowed in a
TURNKEY module or a 'MACH*
trap module is compiled.

E1amnl 1 VERBOSE I -Cb. ok <0>

: Check QUIT ; <cro
QUIT may not be used in a TURNKEY application.

Se also: TURNKEY

F1ORTII
G-192 Tool

#$%&'(° + ,. /0-9 > ? @A-Z A\^ "a-z{I}

VERIFY (-a_)

Format: VERIFY

Action: Returns address of system variable whose contents
determine whether or not a file will be displayed on
the screen during loading. A non-zero value will
indicate that the file should be displayed and a zero
value will indicate that the file should not be displayed.

G-193

$$#%&) +, . 0-9 <:; > ? @ A-Z[\A _'a-z{I1-

VOCABULARY
Format: VOCABULARY <name>

Action: Defining word which creates a dictionary entry using the
specified name. The dictionary entry marks the base for the
new linked-list of words which will be added to this vocabulary.
The vocabulary name is used with ONLY and ALSO to modify
the search order. Up to 9 vocabularies may be defined by
by the user.

ONLY FORTH <cr> ok <0> (Make FORTH the only vocabulary
searched.)

VOCABULARY FONTS -ccr2ok <0> (Create a new vocabulary named
FONTS.)

ALSO FONTS <cr=, ok <0> (Add the FONTS vocabulary to the
search order.)

ORDER ,=cri (ORDER shows the current search)
Search Order : FONTS FORTH (order and the vocabulary to which)
Definitions : FORTH (new definitions will be appended.)
ok <0> (FONTS is currently being searched

first.)

DEFINITIONS c cr3ok <0> (Definitions will make the vocabulary
which is currently being searched

first also the vocabulary to which new

ORDER -crm definitions will be appended.)

Search Order : FONTS FORTH
Definitions : FONTS
ok <0>

See also: DEFINITIONS D g
G-i94 o

0~ V P %-_=• ! $& +("÷,-.0-9 : <, > ? A-Z I[\I A_ " a-z I)}-

variable-pointer"

Format: VP

Action: Variable which holds the offset that, when added to the
contents of the A6 register, points to the next free
variable space location.

0

See Also: VARIABLE , VALLOT

Coripita !on
G.195 C or

0

S #%&')+,-.0-9 : -•? A-Z [\I]A_ .a-z{}

"w-Store"

Format: 16-bit-value address W!

Action: Stores the 16-bit value at the specified address.

Exampl The following example shows that even though numbers placed on
the stack are represented using 32-bits, the operator W! will take only
the least significant word (16-bfts) from the stack and store it in memory

HEX ccr2 ok <$0>
VARIABLE STORAGE cCrwok <$O>

132F STORAGE W! -crcok <$0> The number 132F
as it appears

on the stack./
00 00 13 2F

1 byte 1 byte

Bytes in memory
!" I I I I 1n 11 Ii I 1 1 131 2F I "l 1' l 1 C 3 l

bwer memory -io highermemoORAf W! takes only the lowest-order

STORAGE word from the stack and stores

For Assembly Lanauaoe Proarammers: it starting at the specified address.

CODE WI (w a -)

MOVE.L (AS)+,AO

MOVE.L (A5)+,D1

MOVE.W D1,(AO)

RTS

END-CODE

MACH

See also: W@ M -'• y

G-1%6 0 e ra

!"#$%/.& ')"+, 0 ::<-9 > ? @A-Z (k1"- " a-z(1)-

* w-cmm
Format: n W,

Action: Lays the low-order word of the 32-bit vakue on the stack
into the dictionary, starting at the address pointed to by
the HERE pointer. W, will first check to make sure it is on
a word boundary and adjust the HERE pointer if necessary.
The HERE pointer is then incremented by 2.

Examai*: CREATE TABLE 4cripok <0>

10 W, 20 W, 30 W, 40 W, 4crfAok <0>

TABLE W@ . ccrN10 ok <0>

TABLE 2 2" + W@ . Acr 30 ok <0>

See also: , , C, , ALLOT, HERE

Compila ion
G-197 ANor

#$%& ()+../ 0-9 :; ? @A-Z \]A_ a-z{I)

W-fetcW_.w

Format: address W@

Action: Replaces the address on top of the stack by the word-length
! 6-bit) value which is stored at that address. The upper

2 bytes of the 4 byte value returned are set to zero.

Exampl The following example shows that the W@ operator will
return the 16-bit value which is stored starting as the
specified address :

HEX -.cr. ok <$0>
VARIABLE STORAGE ccrv> ok <$0>
321F STORAGE W! ,cr% ok <$0>

STORAGE
Bytes in memory:

IF7=~ I -HgHI I I 13211Fi

lower memory -> higher memory

00 00 32 1iF

STORAGE W@ . ccr3 321F ok 40>.

For Assembly Lanauage Pmrammers:

CODE W@ (a - w)

MOVE.L (A5)+,Al

CLR.L 01

MOVE.W (A0),D1

MOVE.L DI,-(AS)

RTS

END-CODE
MACH

Soo also: W! , C@, Cl, @, I IVemoty

G-198 03era r

*) WHILE (f.)

Format: BEGIN
(code executed each time though the loop)

flag
WHILE
(code executed while flag is true)

REPEAT
(code executed when loop is terminated)

Action: WHILE is the decision maker in the BEGIN...WHILE...REPEAT
program control structure. If the flag passed to WHILE is
true (non-zero), the code between the WHILE and REPEAT
will be executed until the REPEAT is reached. Upon reach-
ing the REPEAT, program execution will be rerouted back
to the code which follows the BEGIN. If the flag passed to
WHILE is false (zero), WHILE will terminate the loop by
reroutine program execution to to the code which immediately
follows the REPEAT. Due to the structure of the
BEGIN.. .WHILE... REPEAT loop, code between the
WHILE and REPEAT may not be executed at all if a false
flag is passed to WHILE during the first pass through the
loop.

Eumolee TEST-LOOP (Code executed each time
BEGIN g through the loop.)

." Hit a space to continue" CR* (Phrasewhich -• KEY 32.,
generates a - 4-KY3

flag for WHILE

WHILE)" m still alive it" CRWHILE.) REPEAT ; ,
R A

(Code which is executed

(REPEAT will only if flag passed to
always reroute WHILE is tfue.)
program execution
to the code which
follows the BEGIN.)

See Also: BEGIN, REPEAT, UNTIL , AGAIN P m
G-10 o r

nt1
S uct r

W R (c - adr)

Format: ascii-value WORD

Action: Reads a string from the input stream using the given
character as a delimiter. Once WORD has found a string
surrounded by the given delimiter it inserts a length byte
in front of the string to indicate how many characters
are in that string. Then WORD moves the whole string
including the length byte to a location 4 bytes above the
top of the names. WORD puts the string at this location
because if the string happens to be the name of a new
definition, that new definition will already have its name
in place and the rest of the dictionary entry may be built
around it. WORD leaves the address of the length byte of
the string on top of the stack.

WORD also has a special "wild-card" option. If a zero is
passed to WORD it will return the next character in the
current input stream.

ExamU.LfU The example below will show how WORD may be used to
get the next word surrounded by spaces from the input stream.
The word will be stored in a storage location for future use:

VARIABLE Storage 20 VALLOT ,crc ok <O>
GetStrlng 4 dest I len we - 1

32 WORD (Gets next string surrounded by spaces.)
COUNT -2, len (Get length byte and actual string address.)

-', We

-1 +3 we (Adjust address and length to include length)
1 +. len (byte in CMOVE operation.) 0

erc delt count CMOVE ; ok <0> (Move string to storage location.)
Storage GetStrlng HELLO 4cr•, ok <O>
Storage COUNT TYPE -crc HELLO ok O
For Advanced Promrammers:

WORD normally passes all characters it receives through an internal 'translate table'. The
translate table used by WORD does not affect the case of any character it receives but it
does convert all non-printable characters (CR, IF, TAB , ESC , etc) to spaces.
The translate table is not used with the wild-card option mentioned above. When the end of the
input stream is reached when using the wild.card option a zero-length string will be returned.
The following example shows how the screen line comment operator, \. may be defined by
using the wild-card option:

\ BEGIN 0 WORD COUNT 0 SWAP Ca 13 = OR UNTIL ; IMMEDIATE
ignores all characters until a zero length string or a carriage return is encountered.

See also: *TIB G-2C aracer

L20J

W O R()DS& + 0-9 > ? @A-Z [\]_ a-z(I1~

Format: WORDS

Action: Displays on the screen all words which belong to the
vocabulary which is currently being searched first, the
transient vocabulary. The listing may be suspended at
any time by pressing a key and restarted again by hitting
the space bar. Striking any other key will terminate a
suspended WORDS listing.

E l To see a listing of the FORTH vocabulary:

ONLY FORTH ,=cr> ok <0>

WORDS ,<cra,

TURNKEY MAKEMODULE TCALL DUMP
.S ASCII ASSIGNMODULE
$ QUIT
DEPTH ABORT ABORT" ABORTVECTOR

Space Bar to Continue

ok <0>

To see a listing of the ASSEMBLER vocabulary:

ALSO ASSEMBLER ccr> ok <0>

WORDS -crm

ADDX.L ADDX.W ADDX.B SUBX.L
SUBX.W SUBX.B SBCD ABCD
RTD STOP MOVEP.L MOVEP.W
CMPM.L CMPM.W CMPM.B MOVEM.W

Space Bar to Continue
ok <0>

See also: FORTH , ASSEMBLER FO

G-201

!"#$%&'(+ ,••/0-9 > ? @A-Z [\]A_ " a-z{I
W_ (Ln_- Qni__ __

" word-extend"

Format: 8-bit-value WEXT

Action: Extends the byte-length (8-bit) value in the lower byte of
the number on top of the stack into a word-length (1 6-bit)
value by copying bit 7, the sign bit for a byte-length value,
to bits 9-15 of the word-length value.

Soo also: LEXT

G-202 N /

! # %&'("+ , . 0-9 : <-> ? @A-Z [\ '_ a-z(l}-

e •XOR • nl n2• n:3)
"exclusive-or

Format: n1 n2 XOR

Action: Performs the bit-oy-bit logical exclusive-or of nl with n2.
Leaves the result on top of the stack.

p The truth table for XOR is:

A B A XORA B

0 0 0
0 1 1
1 0 1
1 1 0

A common use of XOR is for flipping bits in a number. In the following example the binary
number 11111111 is used to flip all the bits (perform a one's complement) of a byte value:

BINARY cr> ok <0/0>

10101010 <cr> ok <%1>

11111111 XOR <cr> ok c%1>

.<cr> 1010101 ok <%0>

DECIMAL <cr> ok <0>

For Assembly Lnanuage Programmers:

CODE XOR (ni n2 - n3)

MOVE.L (A5)+,DO

EOR.L D0,(AS)

RTS

END-CODE

MACH

See also: OR , AND , NOT

G-203 0 eJo r

! $wo % (+, ., 0-9 • > < ? @ A-Z A\" "a-zi I)-

"left-bracket -

Format: Generally used in the following format -

..... code being compiled
code to be executed immediately]
...... code being compiled

Action: Ends compilation so that subsequent text is interpreted.

mDl IMPATIENT ." Couldn't walt !" ; <or> ok <0>

PATIENT

[IMPATIENT] ." I waited. ; cro Couldn't wait! ok <0>/
(IMPATIENT was executed even though
it is not an immediate word because
[put the system into the interpreting
state. Any words which follow [, such
as IMPATIENT, are forced to execute
immediately and wil not compile any
code.)

PATIENT <cr> I wated. ok <cO>

(When PATIENT is executed, only the words which
were allowed to compile code will be run.

See also:] , IMMEDIATE , COMPILE

CO pila Jon
G-204 r

S0!-#%&'() ,. 0-9:;<c >?@A-Z [\"_'a-zI)-

"bracket-tick"

Format: [l <name>

Action: Immediate word used within a colon definition to compile the
parameter field address of the next word in the definition as a
literal. During execution of the definition the address will be
pushed on the stack. If the word is not found in the current
dictionary search an error message is issued.

[(is a smart word that will support both PC-relative and jump
table addressing modes.

Example: r] could be used to store the address of a custom
ABORT handling routine in the ABORTVECTOR
system variable:

:INSTALL []_CgmtomAbort ABORT-VECTOR

NOTE: [1 must be used in colon definitions.

Se also: , LITERAL

Comriiaion
G-205 W r

! #$%&() + ./0-9 :< > ? @A-Z (\]A "a-z(I-

[.CO-M _P LE] bracket-compil,,

Format: < <name> . [COMPILE] <immediate definition>

Action: Forces the compilation of an IMMEDIATE definition which
would normally be executed during compilation.

Exam.D1L The following sequtence of words could be used in place
of (COMPILE] to achieve the same effect:

... [l] cname= EXECUTE

The immediate word SPEAK-NOW from the IMMEDIATE glossary entry can be compiled

by (COMPILE]:

SPEAK-NOW ." Compiling..." ; IMMEDIATE .ccrz ok <0>

SPEAK-LATER [COMPILE] SPEAK-NOW ; ,cri ok <0>
SPEAK-LATER <cr> Compiling... ok <0>

See also: IMMEDIATE , COMPILE

CO 'pilaion
G-206 orc

S#$%&() + /0-9 :< ? @A-Z [\IA- a-z({1-

"back-slash

Format:

Action: Single-line commenting word. Any words tollowing \
on the current line will be skipped over.

0

Sao also:

G-207 Tool

* "#$%&() + , o/0-9 : ; . ? @A-Z [\]A _a-z{I-

"right-bracket

Format: Generally used in the following format -

...... code being comped
[code to be executed immediately]

S..... code being compiled

Action: Ends interpretation so that subsequent text is compiled.

Examale! Vectored execution

HEX

FRTS 4E75 W, ; IMMEDIATE (A 4E75 is the opcode for an RTS
instruction.)

CREATE VECT-RUN (Assembly language instructions generated:)
U P (JSRUP
RTS (RTS
DOWN (JSR DOWN
RTS (RTS
LEFT (JSR LEFT
RTS (RTS
RIGHT (JSR RIGHT
RTS [(RTS

VECTORED (n -)
6' (Multiply the index by 6 since a

'jump to subroutine' [JSR] plus
an RTS instruction takes up a total
of 6 bytes.)

VECT-RUN + (Add the index-offset to the address
of the start of the table.)

EXECUTE ; (EXECUTE what is at this address.)

2 VECTORED -4cro (This would cause LEFT to be executed.)

See also: [,IMMEDIATE , COMPILE

Co p ion
G-208 or

$ % #$&'(+ , 1 0-9 > ? @ A-Z [\A_,a.z{}* A
"hat

Format: A <name of local variable or named input parameter>

Action: Returns the address of the local variable or named input
parameter whose name follows it. A must be used in a
colon definition.

ExamRIG: Local variables should be used whenever temporary
scratch variable space is needed. The word 'Get2Digits'
below uses EXPECT to get a 2 digit input from the user.
Since the input will be very small (a 2 digit input requires
only two bytes) a local variable location can be used for
the EXPECT buffer. By using a local variable rather
than a global variable (created by VARIABLE), four
bytes of variable space are saved and the routine
becomes re-entrant:

ONLY FORTH DEFINITIONS
DECIMAL

Get2Dlglts { I ExpectBuf - }
CR
.. Input a two digit number -"A ExpectBuf 1+ 2 EXPECT \ pass address of local variable
"A ExpectBuf NUMBER? \ to EXPECT and NUMBER?
I F

The number was -"

ELSE
DROP
CR ." Invalid Input."

THEN ;

Get2Dlgita ,=or>
Input a 2 digit number -> 3 4 The number was -> 34
ok <0>

See also: -> ,

System'Local
G-209 V i le

*%& () , - . 0-9 < ? @A-Z [_A a-z{I)-

Format: (names of initialized local variables) I
(names of non-nitialized local variables) -- (comments))

Action: {marks the start of a local variable list. Local variables
are those whose contents are valid only when the particular
definition that they are defined for is being executed.
Because they are local variables, as opposed to global variables,
they will support reentrant code when writing recursive or
multi-tasking programs.
A local variable list may contain up to three fields-a field for
initialized local variables, a field for non-initialized local
variables, and a comment field. Examples of uses of and syntax
for local variables are given below.

Exmpl The following local variable example takes two numbers off the
stack, stores them in the named input parameters X and Y,
squares each number, and adds the squared values together
to get the final result.

SQUARED { X Y -result }
XX,
Vyy
+ ; crv, ok <0>

4 5 TEST .crp41 ok <0>

Anything in the local variable list after a - is treated as a comment and ignored.
The name 'result' is included only as a reminder that a value is left on the stack.
Other equivalent local variable lists for the above example are:

(X Y- X Y (XYVI-

See also: -•

Sysge'/Local
G-210 V i.le

eJ

. OS-9 VOCABULARY WORDS

$CLOSE
$CREATE
$DELETE
$OPEN
SWRITE
?OS9ERROR
ERRORPATH
FILEID
PARAM PTR
RESPONSE

$CLOSE (pathnumber - errorcode)
$CLOSE will close the file specified by the path number.

$CREATE (pathenameaddr flleattrlbutes accessmode
pathnumbor errorcode)

$CREATE will try to create using the specified pathnarne and wiil try to give the file the
specified permission attributes. If successful, $CREATE will open the file with the specified
access mode and will return the pathnumber as the second number on the stack.
$CREATE will return an error code on top of the parameter stack.

$DELETE (pathnameaddr accessmode errorcode)
$DELETE will look for the file specified by the name string and try to delete it.

$OPEN (pathnameaddr accessmode - pathnumber errorcode)
$OPEN will try to open a the file specified by the path string using the specified access mode.

$WRITE (bufferaddr len pathnumber - #byteswrltten errorcode)
Takes the requested number of bytes from the buffer pointed to by the 'bufferaddr'
parameter and attempts to write them to the open file specified by the file reference
number. The bytes will be written to the file starting at the specified offset into the file.
After the write is completed the number of bytes actually written and an error code
will be returned on the stack.

G-211

OS-9 Vocabulary Words

?OS9ERROR (errorcode)
Evaluates the error code passed to it. If an error has occurred, ?OS9ERROR will print
out an error message in OS-9 format (Error #mmm:nnn). If ERRORPATH contains
a valid path nurmber for an error message file, an additional text message will also be
printed. If no error has occurred, ?OS9ERROR will do nothing.

ERRORPATH (a)

ERRORPATH is the MACH2 system variable used to hold either the path number of a
valid error message file or 0. (see ?OS9ERROR above)

FILEID (a)
FILEID is the MACH2 system variable used to hold the path number of the current path.

PARAM PTR (- a)

Returns the address of the null-terminated parameter string passed to this process
when the process was started.

RESPONSE (a)

RESPONSE is the MACH2 system variable used to hold the address of a signal
intercept handling routine.

G-212

OS-9 Vocabulary Words

. MATH VOCABULARY WORDS

F!
F"
F÷

F-
F.
F.S
F/
F=
F>I
F@
FATAN
FCOS
FDROP
FDUP
Fogx
FIXED
Rog
Fin
FNEGATE
FOVER
FP
FPICK
FROLL
FROT
FSIN
-FSORT

FSWAP
FTANFyAx

bIF
INT

PRECISION

G-213

MATH Vocabulary Words

F! (all F1-)
Stores the floating point number on top of the floating point stack into the address on
top of the parameter stack.

F" a(-I F1 F2 - F3)
MultipliesFl"F2 and leaves the floating point result on top of the floating point stack.

F+ (- I F1 F2 - F3)
Replaces the two numbers on top of the floating point stack with their floating point sum.

F- (-I F1 F2 - F3)
Subtracts FI-F2 and leaves the floating point result on top of the floating point stack.

F. (- IF -)
Displays the number on top of the floating point stack on the screen according to the
current display characteristics set by FIXED and FLOAT.

F.S (I -)
Non-destructively displays the contents of the floating point stack.

F/ (- IF1 F2 - FP)
Divides F1/F2 and leaves the floating point result on top of the floating point stack.

F= (" 11 1 F1 F2 -)
Compares the two numbers on top of the floating point stack. Returns a true (non-zero)
flag on the parameter stack if the two numbers are equal. Returns a false (zero) flag on
the parameter stack if the two numbers are not equal.

F3- (- n IF-)
Converts the number on top of the floating point stack to an integer and puts it on top of
the parameter stack.

F@ (a-I -F)
Puts the floating point number stored at the address on top of the parameter stack on top
of the floating point stack.

FATAN (-I F1 - F2)
Calculates the arctangent of the number on top of the floating point stack and leaves the
result on top of the floating point stack.

G-214

SANE Vocabulary Words

FCOS (F1 - F2)
Replaces the angle on top of the floating point stack by the cosine of the angle.
The angle should be expressed in radians.

FOROP (I F1 -)
Removes the number on top of the floating point stack.

FDUP (-I F - F F)
Duplicates the number on top of the floating point stack

FeOx (I F1 - F2)
Calculates the natural or base-e exponential of the number on top of the floating point
stack and returns the result on top of the floating point stack.

FIXED (n - I -)

Uses the number on top of the parameter stack to set the number of digits which will be
displayed after the decimal point in FIXED point format. After FIXED is used, all floating-
point numbers will be displayed in fixed point format with the specified number of digits
displayed after the decimal point. The default fixed number display includes four digits
after the decimal point.

Fin (- I F1 - F2)
Calculates the natural or base-e logarithm of the number on top of the floating point stack
and returns the result on top of the floating point stack.

Flog (I F1 - F2)
Calculates the logarithm to the base 10 of the number on top of the floating point stack and
returns the result on top of the floating point stack.

FNEGATE (I F - -F)
Negates the value of the floating point number on top of the floating point stack.

FOVER (-I F1 F2 - F1 F2 F1)
Puts a copy of the second number on the floating point stack on top of the floating point stack.

FP (I)
Puts the system in the floating point mode. All numbers entered after FP which contain
decimal points (periods) or exponents will be converted to 80-bit floating point numbers and
placed on the floating point stack. Numbers which do not contain decimal points will be
treated as integer values and will be placed on thG parameter stack. INT returns the system
to the integer mode.

G-215

SANE Vocabulary Words

FPICK (n. I - F) 0
Moves a copy of the nth item down on the floating point stack (where n - 0 refers to the top
item on the floating point stack) to the top of the floating point stack. FPICK takes the integer
value n from the top of the parameter stack.

FROLL (n I
Rotates the nth item on the floating point stack to the top of the floating point stack (where
n-0 refers to the item on top of the floating point stack). FROLL takes the integer value n
from the top of the parameter stack. N must be greater than 0.

FROT (- I F1 F2 F3 - F2 F3 Fl)
Rotates the third number on the floating point stack to the top of the floating point stack.

FSIN (I F1 - F2)
Replaces the angle on top of the floating point stack by the sine of
the angle. The angle should be expressed in radians.

FSQRT (I F1 - F2)
Replaces the number on top of the floating point stack with its square root.

FSWAP (I F1 F2 - F2 F1)
Switches the positions of the two numbers on top of the floating point stack.

FTAN (- I F1 . F2)
Replaces the angle on top of the floating point stack by the tangent of the angle.
The angle should be expressed in radians.

FyAx (- I F1 F2 - F3)
Calculates the value FIAF2 using the two numbers on top of the floating point stack and
returns the result on top of the floating point stack. 0

I:F (n - I - F)
Converts the number on top of the stack to a floating point number and puts it on top of
the floating point stack.

INT (I)
Puts the system into integer mode. All numbers entered are treated as integers and placed
on the parameter stack.

PRECISION (nln2 I
Sets the precision for all subsequent floating point operations. The two vaju es passed to
PRECISION are used to specify the precision. The bottom table on page1 -4 of the
OS-9/68000 Operating System Technical Manual contains the hexadecimal representations
which should be passed to PRECISION.

G-216

SANE Vocabulary Words

0

O ASSEMBLER DIRECTIVES

.ALIGN
DC
DS
EOU
HEADER
LABEL
OS9

.ALIGN ()
ALIGN is used to ensure that the next piece of data (either code or constant values)
put into the dictionary will be aligned in memory on an even word boundary. If the
next position in the dictionary lies on an odd address a zero byte will be inserted as
'padding'. .ALIGN is commonly used when defining character strings since string data
often ends up on an odd address boundary:

HEADER Error1 DC.B 12,'Invalid Year'
.ALIGN

HEADER Error2 DC.B 13,'Invalld Month'
.ALIGN

HEADER Error3 DC.B 11,'Invalld Day'
.ALIGN

HEADER Error4 DC.B 12,'Invalid Hour'
.ALIGN

DC () Format: HEADER <name> DC.s <data>

DC is used to place constant data into the dictionary area. <data> can be an arithmetic
expression, a character string, or any number of expressions or character strings separated
by commas. A character string may contain any printable ASCII character (including spaces)
and must be surrounded by single quotes. To include a single quote in a character string,
precede the single quote by a single quote. The size suffix (L. W, or B) is used to specify
the size of the data laid down by DC. If DC.W or DC.L is used to generate a character string
constant the final word or long word will be padded (to the right) with zeroes if the characters
do not completely fill it. HEADER is used with DC to mark the position of the data in the
dictionary:

HEADER LongData DC.L $434F4445
HEADER ExprosaionDaWC.W 45+(5$6)-(4/2)
HEADER LotsOfData DC.9 45"3,$7F,'Hi','Bya'

.ALIGN
HEADER StringData DC.B 'String with spLces'

.ALIGN

G-217

Assembler Directives

-- II I INOW

DS () Format: LABEL <name> DS.s <hum> i
DS is used to reserve variable storage space in the data area. <num> is an arithmetic
expression or constant used to indicate how many 'units' of memory should be reserved.
The size of a 'unit' is specified by the DS suffix (L, W, or B). LABEL is used to mark the
location of the reserved variable space in the data area. Each of the uses of DS below will
cause 48 bytes of variable storage to be reserved:

LABEL MethodOne DS.L $C
LABEL MethodTwo DS.W 24
LABEL MethodThree DS.B 48
LABEL MethodFour DS.B 2"2"4"(3+12/4)

EQU ()Format: EOU <name> <value>

Assembler directive used to assign values to a symbolic name. The value assigned to
the name may be a constant,expression, or addressing mode.
Assigning an expression to a name (the expression
will be evaluated according to the arithmetic precedence
rules described in the assembler section): ECU SocsiYear 365"24"60"60
Assigning a constant (number) to a name: EQU CR $13
Assigning an addressing mode to a symbolic name: ECU M$Name $C(AO)

HEADER (-) Format: HEADER <name> DC(B).X <vakues>

Used to mark the location of constant data. The address of constant data may be
obtained by licking' the name of its HEADER.

LABEL () Format: LABEL <name> DS.X <number>
Used to mark the location of variable storage space. The address of a storage space
may be obtained by executing the name following LABEL.

OS-9 (-) Format: OS9 <name of system routine>
Assembler word used to generate OS-9 system calls.

G-218

Assembler Directives

Appendices

APPENDIX A: MACH 2 Dictionary Header Structure

Dictionary Header:

I Link Field (4 bytes)

LENGTH BYTE j C Length Field (I byte)

A j T Name Field (variable length)

a0 Segment Field (2 bytes)

--Parameter Field Pointer (4 bytes)

Total header field length is 11 bytes plus the length of the name field.

The LINK FIELD contains a relative 32-bit pointer to previous word in the dictionary which
is also in the same vocabulary.

The SEGMENT FIELD contains a value which indicates how the parameter field address
may be found. The SEGMENT FIELD works together with the PARAMETER FIELD:

SEGMENT FIELD MEANING PARAMETER FIELD
0 User-defined word. Contains offset to word from base of kernel.
1 Kernel word. Contains jump table offset.
2 Floating point word. Contains jump table offset.3 Disk I/O word. Contains jump table offset.
4 Compiler word Contains jump table offset.

Close-Up of Length Byte:
70

•N E D E3 • • Length Field (1byte)

Name length. Names containing up
to 32 characters may be used.

SMUDGE bit
MACH bit

IMMEDIATE bit

A-2

Dictionary Header Structure

0

0 APPENDIX B: MACH 2 Register Usage

The A7 is the register used to control MACH 2's subroutine stack.
This is the stack which holds all the return addresses generated
when MACH 2 jumps to subroutines.

LA6 OS-9 uses the A6 register to hold the address of the top of a
L................. module's data area. MACH 2 keeps its subroutine stack,

block buffers, jump tables, and variable space in the data
area. Use of the A6 register is strongly discouraged.

AS: The AS is the register used to point to the MACH 2's parameter stack.
The AS and A7 stacks grow downward in memory. Only long word
values may be put onto the AS stack. The A7 stack may receive
word or long word values.

.A. . The A4 register is used as a linkage register for MACH 2's local
variables. This register may be used by a program which does
not use local variables.

iA3' The A3 register is used in conjunction with the D5 and D6 registers
to control MACH 2's loop return stack. This is the stack used by
DO loops. Only long word values are put onto the A3 stack.

A 2 Untouched by MACH2.

KIW1,,10/01//,/A• MACH2 scratch registers.

SThe 07 is used for the floating point stack. This is the stack

O used by all floating point operators. The 07 register may be
used by a program which does not use any floating p0;nt routines.

. The D6 register holds the top item on the return stack. During
DO...LOOPs the 06 register will be holding the current index
value for the loop.

D. :' The D5 register holds the second item on the return stack.ID .. , During DO...LOOPs the D5 register will be holding the limit
value for the loop.

D 4 Untouched by MACH2.

MACH2 scratch registers.

A-3

MACH 2 Register Usage

APPENDIX C: THE MACH 2 LOOP (RETURN) STACK

Most FORTH's use the system stack for their return stack, This means that any
definitions which use the return stack must make sure that all values they place on the
return stack are removed before the definition terminates. Such a return stack can
only be used for temporary storage during the execution of the definition. ANY
parameters left on the system stack would cover up important subroutine return
addresses and would cause a fatal system crash.

In MACH 2 a completely separate stack is available as a return stack. To avoid
confusion between the subroutine return stack and the FORTH return stack, this
separate stack is called the 'Loop Stack' since it is primarily used by FORTH to hold
the loop indicies used during DO...LOOPS. The loop stack is also available as a
general purpose stack for use in your programs.

The loop stack has been implemented differently than a normal stack to speed up the
execution of the DO...LOOP control structure. If you use FORTH's return stack operators
you don't have to worry about the details of the special loop stack implementation. If
you are programming in assembly language or if you are trying to disassemble programs
which use DO...LOOPS, please read on.

How the loop stack Is Implemented
First, a diagram of how the loop stack acts when an item is added to it:

BEFRE AFTER

A3: 0 0 0 2 0 60 2 44 stack pointer A3:40 0 0 2 5 8 stack pointer

D6:1 00o0o0o00 titem D6: o 000o00543 topitem

D5:1 0o0000024 seonditem D5: 00 O0000S61 seconditem

00025648
00025644 00000024 fl third item

third item
base' Items base' Items
of the on the of the onthe
stack -41P. stktack stack

A-4

Loop Stack

The first thing to notice is that the top two items on the loop stack are kept in the D6 and
05 registers. The third and following items are kept on a stack whose stack pointer is
kept in the A3 register. Also note that the actual 'stack' portion of the loop stack is an
upward growing stack (normally stacks grow downward in memory).

It takes three steps to add an item to the loop stack:

I. First the second item on the stack (located in the 05 register) must be
moved to the 'A3 stack'. The item is stored at the address contained in
the A3 register and then the address is incremented by four bytes.This
means the stack pointer is always left pointing at the next available slot in
the stack.

2. Second, the top item on the stack (located in the 06 register) is placed in

the second slot on the stack (in the D5 register).

3. Then the new item is put in the top loop stack position (in the D6 register).

The return stack grows up and down through the 05 and D6 registers.

The reason this return stack implementation speeds up the DO...LOOP control structure
is that during the execution of a DO...LOOP, the limit and index will always be the top two
items on the stack. With this return stack the top two items are always kept in registers.
If you were to study the 68000 instruction execution times you would see that instructions
which operate on registers execute much faster than instructions which operate on the
contents of memory locations.

A-5

Loop Stack

APPENDIX D: Subroutine Threading
General Discussion

MACH 2 is subroutine-threaded code. This means that words like 'FORGET or 'ROT'
are actual assembly-language subroutines used by other subroutines such as 'QUERY'
or 'WORDS'. The 68000 runs everything.

While this may sound only natural, such threading is actually new to FORTH. Older
processors, such as the 8085, were not equipped to handle the stack-oriented structure
of FORTH so a virtual CPU had to be written that could keep track of the stacks.
This led to a language that ran via lists of addresses of routines ('address-threading')
which in turn were either lists of addresses or the final assembly language to be executed.
The speed penalty of this virtual CPU is obvious.

The 68000, however, is perfectly equipped to run FORTH by itself due to its
general-purpose registers and addressing-modes which allow many stacks to exist. The
old NEXT instruction, the brain of the virtual CPU, has been replaced by the 68000's own
RTS instruction which executes in 2 ILS (thars two millionth's of a second). The switch to
subroutine-threading brings about tripling in execution speed. It does also cause a slight
increase in the size of the code generated but, in today's large memory machines, program
size is becoming less of an issue. In addition, the language becomes much more
understandable; there's less magic.

The bottom line? FORTH is now three times as fast but still retains its traditionally-small kernel.
It's still an interactive development language whose programs are written and debugged in
perhaps 1/4 the time required for an edit-compile-try again language like C.

How Subroutine-Threading Is Implemented

Very simply, references to other Forth definitions are compiled as JSR's (that's a 68000
mnemonic for Jump to Subroutine). At run-time the 68000 jumps to this subroutine
and returns when the subroutine has finished execution. For instance, this is the
assembly language code for the FORTH word U.:

U. 5 IL
U.
089F86: JSR $-8A(PC) ; $89EFC <#
089F8A: JSR $-14 (PC) ; S89F76 #S
089F8E: JSR 5-80(PC) ; $89FOE #>
089F92: JSR $-9C(PC) ; $89EF6 TYPE
089F96: JSR $-70(PC) ; $8A006 SPACE

ok <0>

U. is comprised of a series of JSR's to other FORTH words. An words in the FORTH
kernel reference each other via PC-relative JSR's.

A-6

Subroutine Threading

0

O APPENDIX E: MACRO SUBSTITUTION
Macro substitution is a technique used at compile time to increase speed by laying in the
actual code for a routine instead of compiling a jump to the subroutine. For example,
in the definition

: SQUARED DUP
the compiler could lay in a jump (4 bytes) to the 'DUP subroutine (JSR) and then a jump
to the - subroutine. The code for 'DUP', however is only MOVE.L (A5),-(A5), a two-byte
instruction that replicates what is on the parameter stack. By laying in the code for 'DUP'
instead of a jump to the 'DUP' subroutine, 'DUP' runs over three times faster. The code for
"-, though, is quite large. In this case, the tiny increase in speed does not justify using such
a large amount of memory. The compiler will compile a PC-relative jump to the - subroutine
instead. A PC-relative jump-to-subroutine instruction (JSR d(PC)) requires 4 bytes.

Using Macro Substitution

A FORTH word is marked as a macro by setting the MACH bit in the name field of a definition.
Usually the word MACH is used for this purpose. MACH is used in the same manner as the
word 'IMMEDIATE'. When the compiler encounters a word with its MACH bit set, it knows it
should lay the code for the word, 'DUP for example, IN the definition instead of a JSR to it.
The compiler wigl move the code from the beginning of the routine up to, but not including,
the first RTS ($4E75) it finds, into the definition being compiled.

Precautions

Do not use any PC-relative references to words outside of the current definition in
words to be 'macro-edc. A PC-relative reference is not valid once it has been moved.

To transler correctly, MACH routines should have ONLY one exit point (RTS) and that
exit should be located in the last line of the routine.

Caution, excessive use of MACH words may yield a large increase in program size with
only a small speed improvement.

A-7

Macro Substitution

Examples

The word ! is defined as follows:

CODE ! (n a -)
MOVE.L (AS)+,AO
MOVE.L (A5)+,(AO)

RTS
END-CODE MACH

The following disassembly shows how! is compiled into a definition, along with several
several other characteristics of compilation. The word to be disassembled is the
following (DUMMY is a variable):

: TEST 0 2 DUP ROT DUMMY

MOVEO.L #S0,DO
MOVE.L D0,-(AS) Move a 0 on to the stack (4 bytes).
MOVEO.L #S2,DO
MOVE.L DO,-(AS) Move a 2 on to the stack (4 bytes).
MOVE.L (AS),.-(A5) Make another copy of whatever's on the stack (4 bytes).
JSR $-7BE6(A6) Jump through the jump table to the code for ROT (4 bytes).
LEA $-71 F8(A6),AO Get address of DUMMY into a register (4 bytes).
MOVE.L (A5)+,(AO) Store top stack item into variable location (2 bytes).
RTS Return to whichever word called this one (2 bytes).
There are four types of compilation apparent in this example. Numbers are compiled,
not as FORTH litera's, but as 68000 MOVE instructions. DUP and ! are marked as
macro words so their code is laid directly into the definition. References to non-macro
FORTH words (such as ROT) are compiled as JSR's through the jump table to the proper
subroutines.

A-8
Macro Substitution

APPENDIX F: Suggested Reference Readings

FORTH

Starting FORTH by Leo Brodie
c 1981 by FORTH, Inc., Hermosa Beach, CA 90254
Prentice-Hal, Inc.

Beginners book on FORTH.

Thinking FORTH by Leo Brodie
c 1984
Prentice-HaNt, Inc.
Discusses FORTH style and programming techniques.

68000 Assembly Language

M68000 16/32-Bit Microprocessor Programmer's Reference Manual, 4th Edition
c 1984 by Motorola Inc.
Prentice-Hal, Inc.
Describes the 68000 processor and each 68000 assembly language instruction.

68000 Assembly Language Programming
by Gerry Kane, Doug Hawkins, and Lance Leventhal
c 1981 by McGraw-Hill, Inc.
OSBORNE/McGraw-Hill
--- : isses 68000 assembly language programming for the beginner.

OS-9 Programming

OS-9/68000 Operating System Technical Manual
OS-9/68000 Macro Assembler Users Manual
OS-9/68000 Operating System User's Manual

Microware Systems Corporation
1866 N.W. 114th Street
Des Moines, Iowa 50322
(515) 224-1929

A-9

Reference Readings

011

APPENDIX G: MACH 2 Error Messages

? Name not found.

ASCII character is missing The word ASCII did not find an ascii character to
convert to a number.

Can' An attempt has been made to FORGET a protected
word.

Compile Only! An attempt has been made to immediately execute
a word which may only be used within a colon definition.

Dictionary entry not specified A defining word (word which creates and names new
dictionary entries) was executed, but the name to
be given to the new dictionary entry did not follow the
defining word on the same line. Typing VARIABLE <cr>
would generate this message.

Divide by Zero Error! Division with a divisor of zero was attempted.

Empty Message issued by the word .S when the stack is
empty and there are no numbers for it to display.

illegal Instruction at The 68000 encountered an instruction it did not
recognize at the address indicated.

is Redefined A new definition has been created with the same name
as a currently existing definition. Because dictionary
searches will terminate at the first version of a word
found, the previously defined word is now hidden.

Line 1111 error at A Line 1111 exception (usually a breakpoint) has
been encountered at the specified address.

Missing) A comment is missing its right parenthesis.

Missing WHILE The WHILE is missing from a BEGIN..WHILE..
REPEAT loop.

No Block Zero! The FORTH-83 standard does not allow LISTing
or LOADing of block 0.

A-10

MACH 2 Error Messages

Return stack misalignment The return stack pointer changed position during
the compilation of a definition. This can oe caused
by leaving extra values on the return stack or by
removing too many values from the return stack
during the compilation process. This error condition
generates an abort.

Single character only A string with more than 1 character followed the word ASCII.

Stack Empty! An attempt was made to take a number from the parameter
stack when the stack was empty.

Unpaired BEGIN A BEGIN is missing its corresponding AGAIN, UNTIL, or
REPEAT.

Unpaired CASE A CASE is missing its corresponding ENDCASE.

Unpaired DO A DO is missing its corresponding LOOP or +LOOP.

Unpaired IF An IF is missing its corresponding THEN.

Unpaired OF An OF is missing its corresponding ENDOF.

0

A-11

MACH 2 Error Messages

0

APPENDIX H: 0S-9/68000 USER MODE SYSTEM CALLS

F$AIIBIt Sets bits in an allocation bit map.

Assembler Call: OS9 FSAIISit

Input: DO.W - Bit number of first bit to seL
DI.W - Sit count (number of bits to set).
(AO) . Base address of an allocation bit map.

Output: None.

Error Output: cc . Carry bit set.
DI .W - Appropriate error code.

F$Chaln Load and execute a new primary module

Assembler Call: OS9 FSChain

Input: DO.W - Desired module type/language
(must be program/object or O.any)

D1.L - additional memory size
D2.L parameter size
03.W - number of 1/0 paths to copy
D4.W . priority
(AO) - module name ptr
(Al) - parameter ptr

Output: DO.W - child process ID
(AO) - updated beyond module name

Error Output: cc - Carry bit set.
Dl .W - Appropriate error code.

Possible Errors: E$NEMod

F$CmpNam Compare two names.

Assembler Call: OS9 F$CmpNam

Input: DI.W - Length of pattern string
(Ao) - Pointer to pattern string
(At) - Pointer to target string

Output: cc - Carry bit clear if the strings match

Error Output: cc - Carry bit set.
DI.W - Appropriate error code if unequal or error

Possible Errors: ESOiffer, ESStkOvf

A-1 2

os-9 User Mode System Calls

F$CpyMem Copy external memory.

Assembler Call: OS9 F$CpyMem

Input: DO.W - Process I0 of external memory's owner
D1.1 - Number of bytes to copy
(AO) - Address of memory in external process to copy
(Al) - caller's destinaton buffer pointer

Output: None.

Error Output: cc - Carry bit set.
Dl.W - Appropriate error code.

F$CRC Generate CRC.

Assembler Call: OS9 F$CRC

Input: 0.01 Oata byte count
D1 .L - CRC accumulator
(AO) - Pointer to data

Output: D1.1 - Updated CRC accumulator

Error Output: cc - Carry bit set.
D1 .W - Appropriate error code.

F$DatMod Create data module.

Assembler Call: 0S9 FSDatMod

In put: D0.1 Size of data required (not including header or CRC)
D1.W - Module attr/revision
02.W - Module access permission
(AO) - Module name string ptr

Output: DO.W . Module type/language
D1.W - Module attr/revision
(AO) - Updated name string ptr
(Al) - Module data ptr ('execution' entry)
(A2) - Module header ptr

Error Output: cc - Carry bit set.
D1 .W - Appropriate error code.

Possible Errors: E$MNam

A-13

0S-9 User Mode System Calls

FSD9IBIt Deallocate in a bit map.

Assembler Call: OS9 F$DolSit

Input: DO.W . Bit number of first bit to clear
D1.W - Bit count (number of bits to clear)
(Ao) . Bass address of an allocation bit map

Output: None.

Error Output: cc . Carry bit set.
D1 .W . Appropriate error code.

F$OExec Execute debugged program.

Assembler Cal: OS9 FSDExec

Input: DO.W - Process ID of child to execute
DU .L - Number of instructions to execute (0-continuous)
D2.W . Number of breakpoints in list
(AO) . Breakpoint list
register buffer contains child register image

Output: D0.L . Total number of instructions executed so far
D1 .L - Remaining count not executed
D2.W . Exception occurred, it non-zero; exception offset
D3.W . Classification word (addr or bus trap only)
D4.L - Access address (addr or bus trap only)
D5.W - Instruction register (addr or bus trap only)
register buffer updated

Error Output: cc - Carry bit set.
D1.W - Appropriate error code.

Possible Errors: ESIPrcD, E$PrcAbt

FSDExlt Exit debugged program. 0
Assembler Call: OS9 FSDExit

Input: DO.W M Process ID of child to terminate

Output: None.

Error Output: cc - Carry bit set.
DI .W - Appropriate error code.

Possible Errors: E$IPrcID

A-1 4

0S-9 User Mode System Calls

0

F$OFork Fork process under control of debugger.

Assembler Call: 0S9 F$OFork

Input: DO.W . Desired module type/revision (0.any)
D1 .L . Additional stack space to allocate (if any)
02.L Parameter size
D3.W . Number of I/O paths for child to inherit
D4.W . Module priority
(AO) - Module name ptr (or pathlist)
(Al) - Parameter ptr
(A2) - Register buffer: copy of child's (DO-D7/AO-A7/SR/PC)

Output: DO.W . Child process ID
(AO) . Updated past module name string
(A2) . Initial image of the child process' registers in buffer

Error Output: cc - Carry bit set.
DI.W . Appropriate error code.

F$Exlt Terminate the calling process.

Assembler Call: 0S9 FSExit

Input: DO.W - Status code to be retruned to the parent process

Output: Process is terminated

Error Output: None.

F$Fork Create a new process.

Assembler Call: OS9 FSFork

Input: DO.W Desired module typeftevision
(usually program/object 0-any)

D1 .L - Additional memory size
D2.L - Parameter size
D3.W -Number of 1/0 paths to copy

D4.W .Priority
(AO) - Module name ptr
(Al) - Parameter ptr

Output: DO.W - Child process ID
(AO) - Updated past module name string

Error Output: -cc Carry bit set.
01 .W - Appropriate error code.

Possible Errors: E$NEMod

A-15

OS-9 User Mode System Calls

F$GModDr Get module directory.

Assembler Call: OS9 F$GModDr

Input: D1.L - Maximum number of bytes to copy
(AO) - Buffer pointer

Output: DU.L . Actual number of bytes copied

Error Output: cc - Carry bit set.
D1.W - Appropriate error code.

F$GPrDBT Get process descriptor block table copy.

Assembler Call: OS9 F$GPrDBT

Input: D1.L , Maximum number of bytes to copy
(AO) - Buffer pointer

Output: D1.L - Actual number of bytes copied

Error Output: cc - Carry bit set.
D1 .W - Appropriate error code.

F$GPrDsc Get process descriptor copy.

Assembler Call: OS9 F$GPrDsc

Input: DO.W - Requested process ID
DI.W - Number of bytes to copy
(AO) - Process descriptor buffer pointer

Output: None.

Error Output: cc - Carry bit set.
DI.W - Appropriate error code.

Possible Errors: E$PrclD

F$ID Get process ID / user ID.

Assembler Call: OS9 F$1D

Input: None.

Output: DOW - Current process ID
DI.L - Currant process group/user number
D2.W - Current process priority

Error Output: cc - Carry bit set.
Dl.W - Appropriate error code.

A-16

OS-9 User Mode System Calls

F$1cpt Set up a signal intercept trap.

Assembler Call: OS9 F$1Opt

Input: (AO) - Address of the intercep routine
(A6) - Address to be passed to the intercept routine

Output: Signals sent to the process will cause the intercept routine
to be called instead of the process being killed.

Error Output: None.

FSJullan Get Julian date.

Assembler Call: OS9 FSJulian

Input: DO.L - Time (00hhmmss)
D.L - Date (yyyymmdd)

Output: DO.L - Time (seconds since midnight)
Dl.L . Julian date

Error Output: cc - Carry bit set.
Dl .W - Appropriate error code.

FSLInk Link to memory module.

Assembler Call: OS9 FSLink

Input: DO.W - Desired module type/language byte (O0any)
(AO) - Module name string pointer

Output: D0.W - Actual module type/language
D1 .W - Module attributes/revision level
(AO) - Updated past the module name
(At) - Module execution entry point
(A2) - Module pointer

Error Output: cc - Carry bit set.
D1 .W -Appropriate error code.

Possible Errors: ESMNF, ESBNam, E$ModBsy

A-1 7

OS-9 User Mode System Calls

F$Load Load module(s) from a file.

Assembler Call: OS9 FSLoad

Input: DO.B . Access mode
(AO) . Path name pointer

Output: DO.W . Actual module type/language
D1.W - Attributes/revision level
(AO) . Updated beyond path name
(Al) - Module execution entry pointer (of 1 st module loaded)
(A2) . Module pointer

Error Output: cc - Carry bit set.
D1 .W . Appropriate error code.

Possible Errors: E$MemFul, E$BMID

FSMem Resize data memory area.

Assembler Call: OS9 F$Mem

Input: D0.L - Desired new memory size in bytes.

Output: D0.L Actual size of new memory area in bytes
(Al) Pointer to new end of data segment (+1)

Error Output: cc . Carry bit set.
Dl .W . Appropriate error code.

Possible Errors: ES0eISP. ESMemFuI ESNoRAM

F$PErr Print error message.

Assembler Call: OS9 FSPErr

Input: DO.W . Error message path number (0-none)
DI.W . Error number

Output: None.

Error Output: None.

F$PrsNam Parse a path name.

Assembler Call: OS9 F$PrsNam

Input: (AO) . Name of stnng pointer

Output: DO.B - Pathlist delimiter
Dl .W - Length of pathlist element
(AO) . Pathlist ptr updated past the optional '" character
(Al) Address of the last character of the name +1

Error Output: cc Carry bit set.
D1 .W Appropriate error code.

A-18

0S-9 User Mode System Calls

FSRTE Return from interrupt exception.

Assembler Call: OS9 FaS'rE

Input: None.

Output: None.

F$SchBlt Search bit map for a free area.

Assembler Call: OS9 F$SchBit

Input: DO.W - Beginning bit number to search
DIW - Number of bits needed
(AO) - Bit map pointer
(Al) - End of bit map (+1) pointer

Output: DO.W - Beginning bit number found
D1.W - Number of bits found

Error Output: cc - Carry bit set.
D1 .W - Appropriate error code.

F$Send Send a signal to another process.

Assembler Call: OS9 F$Send

Input: DO.W - Intended receiver's process ID number (0-all)
D0.W - Signal code to send

Output: None.

Error Output: cc - Carry bit set.
Dl .W - Appropriate error code.

Possible Errors: E$1PrcID, E$USigP

F$SotCRC Generate valid CRC in module.

Assembler Call: OS9 F$SetCRC

Input: (Ao) - Module pointer

Output: None.

Error Output: cc - Carry bit set.
DI.W - Appropriate error code.

Possible Errors: ESBMID

A-19

0S-9 User Mode System Calls

F$SetSys Set/Examine OS-9 system global variables.

Assembler Call: OS9 F$SetSys

Input: DO.W = Offset of system global variable to set/examine
D1 .L - Size of variable in least significant word

(1, 2. of 4 bytes). The most significant bit, if set.
indicates an examination request. Otherwise, the
variable is changed to the value in register 02.

D2.L - New value (if change request)

Output: D2.L - Original value of system global variable

Error Output: cc - Carry bit set.
DI.W - Appropriate error code.

F$Sleep Put calling process to sleep.

Assembler Call: OS9 F$Sleep

Input: D0.L - Ticks/seconds (number of ticks to sleep)

Output: DO.W - Remaining number of ticks if awakened prematurely

Error Output: cc - Carry bit set.
Dl.W - Appropriate error code.

Possible Errors: ESNoCIk

F$SPrlor Set process priority.

Assembler Call: OS9 FSSPrior

Input: DO.W - Process ID number
D1 .W - Desired process priority: 65535,highest, 0-lowest

Output: None.

Error Output: cc - Carry bit set.
DI.W - Appropriate error code.

Possible Errors: ESIPrclD

FSSRqMem System memory request.

Assembler Call: OS9 FSSRqMem

Input: D0.1 - Byte count of requested memory

Output: D0.L - Byte count of memory granted
(A2) - Pointer to memory block allocated

Error Output: cc - Carry bit set.
Dl.W - Appropriate error code.

Possible Errors: ESMemFul, ESNoRAM

A-20

0S-9 User Mode System Calls

0

F$SRtMem Return system memory.

Assembler Call: OS9 F$SRtMew

Input: DO.L - Byte count of memory being returned
(A2) . Address of memory block being returned.

Output: None.

Error Output: cc - Carry bit set.
DI .W - Appropriate error code.

Possible Errors: E$SBPAddr

F$SSpd Suspend process. (currently not implemented).

Assembler Call: OS9 F$SSpd

Input: DO.W - Process ID to suspend

Output: None.

Error Output: cc - Carry bit set.
DI .W - Appropriate error code.

Possible Errors: E$NoCk

F$STImo Set system date and time. -

Assembler Call: OS9 FSSTime

Input: DO.L - Current time (00hhmmss)
D0 .L - Current date (yyyymmdd)

Output: Time/date is set.

Error Output: cc - Carry bit set.
DM.W - Appropriate error code.

F$STrap Set error trap handler.

Assembler Call: OS9 F$STrap

Input: (AO) - Stack to use if exception occurs
(or zero to use the current stack)

(Al) - Pointer to service request initialization table

Output: None.

Error Output: cc - Carry bit set.
D1 .W - Appropriate error code.

A-21

OS-9 User Mode System Calls

F$SUser Set user ID number.

Assembler Call: OS9 F$SUser

Input: D1.L - Desired group/user ID number

Output: None.

Error Output: cc . Carry bit set.
D1.W . Appropriate error code.

F$SysDbg Call system debugger.

Assembler Call: OS9 FSSysDbg

Input: None.

Output: None.

Error Output: cc . Carry bit set.
D1.W - Appropriate error code.

F$Tlmo Get system date and time.

Assembler Call: OS9 F$Tmne

Input: DO.W . Format: 0,Gregorian; 1-Julian;
2,Gregorian with ticks; 3-Julian with ticks

Output: DO.L - Current time
Dl.L - Current date
D2.W - Day of week (0-Sunday to 6,Saturday)
D3.L - Tick rate/current tick (if requested)

Error Output: cc - Carry bit set.
D1 .W - Appropriate error code.

F$TLInk Install user trap handling routine.

Assembler Call: OS9 F$TUnk

Input: DO.W - User trap number (1-15)
Dl .L - Optional memory override
(AO) . Module name pointer
N (A0)-0 or if ((A0)].O, trap handler is unlinked.
Other parameters may be required for specific trap handlers.

Output: (AO) - Updated past module name
(Al) . Trap library execution entry point
(A2) - Trap module pointer
Other values may be returned by specific trap handlers.

Error Output: cc - Carry bit set.
Dl .W . Appropriate error code.

A-22

OS-9 User Mode System Calls

F$UnLInk Unlink a module by address.

Assembler Call: OS9 FSUnLink

Input: (A2) - Address of the module header

Output: None.

Error Output: cc - Carry bit set.
D1.W - Appropriate error code.

F$UnLoad Unlink module by name.

Assembler Call: OS9 FSUnLoad

Input: DO.W - Module type/anguage
(AO) - Module name pointer

Output: (AO) - Updated past module name

Error Output: cc - Carry bit set.
DI.W - Appropriate error code.

F$Walt Wait for child process to terminate.

Assembler Call: OS9 FSWait

Input: None.

Output: DO.W - Deceased child process' process ID
D1.W - Child process' exit status code

Error Output: cc - Carry bit set.
D1 .W = Appropriate error code.

Possible Errors: ESNoChld

A-23

OS-9 User Mode System Calls

- -

APPENDIX/: OS-9/68000: I/0 SYSTEM CALLS

ISAttach Attach a new device to the system.

Assembler Call: OS9 ISAttach

Input: DO.B . Access mode (Read_ Write.,Updatj
(Ao) - Device name pointer

Output: (A2) = System's device table pointer

Error Output: cc . Carry bit set.
D1 .W - Appropriate error code.

Possible Errors: ESDevOvf . ESBMode, ESDevBsy, ESMemFui

I$ChgDIr Change working directory.

Assember Call: OS9 I$ChgDir

Input: Do.B - Access mode (read/write/exec)
(AO) - Address of the pathlist

Output: (AO) - updated past pathname

Error Output: cc - Carry bit set.
D1.W - Appropriate error code.

Possible Errors: ESBPNam, E$BMode

I$Ciose Close a path to a file/device.

Assembler Call: OS9 I$Close

Input: DO.W - Path number

Output: None.

Error Output: cc - Carry bit set.
DI.W = Appropriate error code

Possible Errors: ESBPNum

I$Create Create a path to a new fite.

Assembler Call: OS9 I$Create

Input: DO.B - Access mode (S. I, E. W, R)
B1.W - File attributes (access permission)
D2.L - Initial allocation size (optional)
(AO) - Pathname pointer

Output:

Error Output: cc - Carry bit set.
D1 .W - Appropriate error code

A-24

0S-9 L/0 System Calls

I$Create Create a path to a new file.

Assembler roll: OS9 I$Creato

Input: D0.B - Access mode (S, 1. E, W, R)
Bl.W . File attributes (access permission)
D2.L . Initial allocation size (optional)
(AO) - Pathname pointer

Output: DO.W . Path number
(AO) = Updated past the patnlist

Error Output: cc - Carry bit set.
D1.W - Appropriate error code

Possible Errors: E$PthFul, E$BPNam

I$Delete Delete a file.

Assembler Call: OS9 I$Delete

Input: DO.B - Access mode (readtwrite/exec)
(AO) - Pathname pointer

Output: (AO) - Updated past pathlist

Error Output: cc - Carry bit set.
01.W - Appropriate error code

Possible Errors: E$BPNarn

I$Detach Remove a device from the system.

Assembler Call: OS9 I$Detach

Input: (A2) - Address of the device table entry

Output: None.

Error Output: cc - Carry bit set.
DI.W - Appropriate error code

Possible Errors: ESBPNam

I$Dup Duplicate a path.

Assembler Call: OS9 I$Oup

Input: DO.W - Path number of path to duplicate

Output: DO.W M New number for the same path

Error Output: cc - Carry bit set.
D1.W - Appropriate error code

Possible Errors: E$PthFul, E$BPNum

A-25

OS-9 I/O System Calls

I$GotStt Get file/device status. 0
Assembler Call: OS9 I$GetStt

Input: DO.W - Path number
DI.W - Function code
Others - Dependent on function code

Output: Dependent on function code

Error Output: cc - Carry bit set.
D1 .W - Appropriate error code

Possible Errors: ESBPNum

I$MakDlr Make a new directory.

Assembler Call: oS9 ISMakDir

Input: DO. - Access mode
DI.W - Access permissions
12.L - Initial allocation size (optional)
(AO) - Pathname pointer

Output: (AO) - Updated past pathname

Error Output: cc - Carry bit set.
D1.W - Appropriate error code

Possible Errors: ESBPNam, ESCEF

I$Open Open a path to a file or device.

Assembler Call: OS9 I$Open

Input: 00.8 - Access mode (D, S. E, W. R)
(AO) - Pathname pointer

Output: DO.W - Path number
(AO) - (Updated past pathname (trailing spaces skipped)

Error Output: cc - Carry bit set.
D1.W - Appropriate error code

Possible Errors: E$PthFul. E$BPNam, E$Bmode, E$FNA, ESPNNF, E$Share

A-26

OS.9 L/O System Calls

O

I$Read Read data from a file or device.

Assembler Call: OS9 ISRead

Input: DO.W - Path number
D1 .L - Maximum number of bytes to read
(Ao) - Address of input buffer

Output: D1.L - Number of bytes actually read

Error Output: cc - Carry bit set.
DI .W - Appropriate error code

Possible Errors: E$BPNum, E$Read, ESBMode, ESEOF

I$ReadLn Read a line of text with editing.

Assembler Call: OS9 I$ReadLn

Input: DO.W , Path number
DU .L - Maximum number of bytes to read
(AO) - Address of input buffer

Output: DI.L - Actual number of bytes written

Error Output: cc - Carry bit SOL
Dl .W - Appropriate error code

Possible Errors: E$BPNum, ESRead, E$BMode

ISSeek Reposition the logical file pointer.

Assembler Call: OS9 I$Seek

Input: DO.W - Path number
DU .L - New position

Output: None.

Error Output: cc - Carry bit set.
DI.W - Appropriate error code

Possible Errors: ESBPNum

A-27

OS-9 I/0 System Calls

I$SetStt Set file/device status.

Assembler Call: OS9 ISSetStt

Input: DO.W - Path number
DI.W - Function code
Others . Function code dependent

Output: Function code dependent.

Error Output: cc - Carry bit set.
DI.W - Appropriate error code

Possible Errors: E$BPNum

I$Wrlte Write data to a file or device.

Assembler Call: OS9 I$Write

Input: DO.W - Path number
Dl .L Maximum number of bytes to write
(AO) - Address of buffer

Output: D1.L - Number of bytes actually written

Error Output: cc - Carry bit set.
D1 .W - Appropriate error code

Possible Errors: ESBPNum, ESBMode. E$Writs

I$WrltLn Write a line of text with editing.

Assembler Call: OS9 ISWritLn

Input: DO.W - Path number
D1.L - Maximum number of bytes to write
(AO) - Address of buffer 0

Output: D1.L - Actual number of bytes written

Error Output: cc a Carry bit set.
DI.W a Appropriate error code

Possible Errors: E$BPNum, E$Read, E$BMode

A-28

OS-9 I/0 System Calls

0

O APPENDIX J: 0-9/68000: SYSTEM MODE SYSTEM CALLS

F$AIIPD Allocate process/path descriptor.

Assembler Call: OS9 FSAJIPO

Input: (AO) - Process/path table pointer

Output: DO.W - Process/path number
(Al) . Pointer to process/path descriptor

Error Output: cc . Carry bit set.
Di1.W - Appropriate error code.

F$AIIPrc Allocate process descriptor.

Assembler Call: OS9 FSAIIPrc

Input: None.

Output: (A2) - Process descriptor pointer

Error Output: cc - Carry bit set.
Dl .W , Appropriate error code.

Possible Errors: E$PrcFul

F$AProc Insert process in active process queue.

Assembler Call: OS9 F$AProc

Input: (AO) - Address of process descriptor

Output: None.

Error Output: cc - Carry bit set.
DM.W - Appropriate error code

F$FIndPD Find process/path descriptor.

Assembler Call: OS9 FSFindPD

Input: DO.W - Process/path number
(AO) - Process/path table pointer

Output: (Al) - Pointer to process/path descriptor

Error Output: cc = Carry bit set.
D1 .W . Appropriate error code

A-29

OS-9 L/0 System Mode System Calls

F$1O u Enter I/0 queue.

Assembler Call: 0S9 F$1Ou

Input: DO.W = Process number

Output: None.

Error Output: cc . Carry bit set.
D1.W - Appropriate error code.

F$IRQ Add or remove device from IRO table.

Assembler Call: OS9 F$1RQ

Input: D0.B - vector number:
25-31 for autovectors
64-255 for vectored IRO's

01.6 - priority (O.polled first, 255.last)
(AO) - IRO service routine entry point (0-delete)
(A2) - global static storage pointer (must be unique to device)
(A3) - port address

Output: None.

Error Output: cc - Carry bit set.
DI.W - Appropriate error code.

Possible Errors: ESPOLL

F$Move Move data (low bound first)

Assembler Call: OS9 F$Move

Input: DO.W - Source task number (not req'd on Level 1)
Dl .W - Destination task number (not req'd on Level 1)
02.L - Byte count to copy
(AO) - Source pointer
(A2) - Destination pointer

Output: None.

Error Output: cc - Carry bit set.
Dl.W - Appropriate error code.

F$NProc Start next process.

Assembler Call: OS9 FSNProc

Input: None.

Output: Control does not return to caller.

Error Output: cc - Carry bit set.
D1.W - Appropriate error code

A-30

OS-9 L/O System Mode System Calls

OFF

F$RstPD Return process/path descriptor.

Assembler Call: OS9 F$RetPO

Input: DO.W - Process/path number
(AO) - Process/path table pointer

Output: None.

Error Output: cc - Carry bit set.
Dl .W - Appropriate error code.

F$SLInk System link.

Assembler Call: OS9 F$SLink

Input: DO.W - Desired module typetlanguage (0-any)
(AO) - Module name string pointer

Output: DO.W - Actual module type/language
DI.W - Module attributes/revision
(AO) - Updated beyond name string
(Al) - Module entry point
(A2) - Module pointer

Error Output: cc - Carry bit set.
D1 .W - Appropriate error code.

Possible Errors: E$ModBsy, E$MemFuI

F$SSvc Service request table initialization.

Assembler Call: OS9 F$SSvc

Input: (Al) - Pointer to service request initialization table

Output: None.

Error Output: cc - Carry bit set.
D¶.W - Appropriate error code.

F$VModul Verify module.

Assembler Call: 0S9 F$VModul

Input: D0.L Module group ID
(AO) - Address of module

Output: (A2) - Directory entry pointer

Error Output: cc - Carry bit set.
D1.W - Appropriate error code

Possible Errors: ESKwnMod, E$OirFul, ESBMID, E$BMCRC, D$BMHP

A-31

OS-9 I/0 System'Mode System Calls

0J i-

APPENDIX K: OS-9 Error Codes

Error Number Error Type Description Symbol

000:002 Miscellaneous Keyboard Quit
000:003 Miscellaneous Keyboard Interrupt
000:064 Miscellaneous Illegal Function Code E$1I1Fnc
000:065 Misceilaneous Format Error E$FmtErr
000:066 Miscellaneous Number Not Found. E$NotNum
000:067 Miscellaneous Illegal Argument E$I11Arg
000:102 Uninitialized Trap Bus Error E$BusErr
000:103 Uninitialized Trap Address Error E$AdrErr
000:104 Uninitialized Trap Illegal Instruction E$SI11ns
000:105 Uninitialized Trap Zero Divide E$ZerDiv
000:106 Uninitialized Trap Check (CHK) E$Chk
000:107 Uninitialized Trap TRAPV E$TrapV
000:108 Uninitialized Trap Privilege Violation E$Violat
000:109 Uninitialized Trap Trace Error E$Trace
000:110 Uninitialized Trap Line 1010 Emulator E$1010
000:111 Uninitialized Trap Line 1111 Emulator E$1111
000:112 Uninitialized Trap Invalid TRAP #12 E$Resrvd
000:113 Uninitialized Trap Invalid TRAP #13 E$Resrvd
000:114 Uninitialized Trap Invalid TRAP #14 E$Resrvd
000:115 Uninitialized Trap Invalid TRAP #15 E$Resrvd
000:116 Uninitialized Trap Invalid TRAP #16 E$Resrvd
000:117 Uninitialized Trap Invalid TRAP #17 E$Resrvd
000:118 Uninitialized Trap Invalid TRAP #18 E$Resrvd
000:119 Uninitialized Trap Invalid TRAP #19 ESResrvd
000:120 Uninitialized Trap Invalid TRAP #20 E$Resrvd
000:121 Uninitialized Trap Invalid TRAP #21 ESResrvd
000:122 Uninitialized Trap Invalid TRAP #22 E$Resrvd
000:123 Uninitialized Trap Invalid TRAP #23 E$Resrvd
000:124 Uninitialized Trap Invalid User TRAP #1 E$Trap
000:125 Uninitialized Trap Invalid User TRAP #2 E$Trap
000:126 Uninitialized Trap Invalid User TRAP #3 E$Trap
000:127 Uninitialized Trap Invalid User TRAP #4 ESTrap
000:128 Uninitialized Trap Invalid User TRAP #5 ESTrap
000:129 Uninitialized Trap Invalid User TRAP #6 E$Trap
000:130 Uninitialized Trap Invalid User TRAP #7 ESTrap
000:131 Uninitialized Trap Invalid User TRAP #8 E$Trap
000:132 UninitiAlized Trap Invalid User TRAP #9 ESTrap
000:133 Uninit alized Trap Invalid User TRAP #10 E$Trap
000:134 Uninitialized Trap Invalid User TRAP #11 E$Trap

A-32

OS-9 Error Codes

* Error Number Error Type Description Symbol

000:135 Uninitialized Trap Uninitialized User TRAP #12 ESTrap
000:136 Uninitialized Trap Uninitialized User TRAP #13 E$Trap
000:137 Uninitialized Trap Uninitialized User TRAP #14 ESTrap
000:138 Uninitialized Trap Uninitialized User TRAP #15 ESTrap
000:139 Miscellaneous No Permission ESPermit
000:140 Miscellaneous Different Arguments ESDiffer
000:141 Miscellaneous Stack Overflow E$StkOvf
000:142 Miscellaneous Illegal Event ID ESEvntID
000:143 Miscellaneous Event Name Not Found ESEvNF
000:145 Miscellaneous Event Busy ESEvBusy
000:146 Miscellaneous Impossible Event Parameter ESEvParm
000:200 OS-9 Path Table Full E$PthFul
000:201 OS-9 Illegal Path Number ESBPNum
000:202 OS-9 Interrupt Polling Table Full E$Poll
000:203 OS-9 Illegal Mode E$BMode
000:204 OS-9 Device Table Full E$DevOvf
000:205 OS-9 Illegal Module Header E$BMID
000:206 OS-9 Module Directory Full E$DirFul
000:207 OS-9 Memory Full E$MemFul
000:208 OS-9 Illegal Service Request E$UnkSvc
000:209 OS-9 Module Busy E$ModBsy
000:210 OS-9 Boundary Error E$BPAddr
000:211 OS-9 End of File E$EOF
000:212 OS-9 Vector Busy E$VctBsy
000:213 OS-9 Non-Existing Segment E$NES
000:214 OS-9 File Not Accessable E$FNA
000:215 OS-9 Bad Path Name E$BPNam
000:216 OS-9 Path Name Not Found E$PNNF
000:217 OS-9 Segment List Full E$SLF
000:218 OS-9 File Already Exists E$CEF
000:219 OS-9 Illegal Block Address E$IBA
000:220 OS-9 Telephone (Modem) Data E$HangUp

Carrier Lost
000:221 OS-9 Module Not Found E$MNF
000:222 OS-9 No Clock E$NoCIk
000:223 OS-9 Suicide Attempt E$DeISP
000:224 OS-9 Illegal Process Number E$IPrcID
000:225 OS-9 Bad Polling Parameter E$Param
000:226 OS-9 No Children E$NoChId
000:227 OS-9 Illegal Trap Code E$1Trap
000:228 OS-9 Process Aborted E$PrcAbt

A-33

OS-9 Error Codes

Error Number Error Type Description Symbol

000:229 OS-9 Process Table Full E$PrcFul
000:230 OS-9 Illegal Parameter Area E$lForkP
000:231 OS-9 Known Module E$KwnMod
000:232 OS-9 Incorrect Module CRC E$BMCRC
000:233 OS-9 Signal Error E$USigP
000:234 OS-9 Non-Existent Module E$NEMod
000:235 OS-9 Bad Name E$BNam
000:236 OS-9 Bad Parity ESBMHP
000:237 OS-9 RAM Full ESNoRAM
000:238 OS-9 Directory Not Empty E$DNE
000:239 OS-9 No Task Number Available E$NoTask
000:240 Device Driver Illegal Drive Number ESUnit
000:241 Device Driver Bad Sector E$Sect
000:242 Device Driver Write Protect E$WP
000:243 Device Driver CRC Error E$CRC
000:244 Device Driver Read Error E$Read
000:245 Device Driver Write Error E$Write
000:246 Device Driver Not Ready E$NotRdy
000:247 Device Driver Seek Error E$Seek
000:248 Device Driver Media Full ESFull
000:249 Device Driver Wrong Type E$BTyp
000:250 Device Driver Device Busy E$DevBsy
000:251 Device Driver Disk ID Change E$DIDC
000:252 Device Driver Record Is Locked Out E$Lock
000:253 Device Driver Non-Sharable File Busy E$Share
000:254 Device Driver I/O Deadlock E$DeadLk
000:255 Device Driver Device is Format Protected E$Format

A-34

OS-9 Error Codes

. APPENDIX L: ASCII Chart

The 'Char column contains the ASCII characters. Some of these characters are
control characters which are not seen on the keyboard. The 'Hex' column contains
the hexadecimal numerical equivalents and the 'Dec' column contains the decimal
numerical equivalents.

Char Hex Dec Char Hex Dec Char Hex Dec Char Hex Dco
NUL 00 00 SP 20 32 @ 40 64 60 96
SOH 01 01 21 33 A 41 65 a 61 97
STX 02 02 22 34 B 42 66 b 62 98
ETX 03 03 8 23 35 C 43 67 c 63 99
EOT 04 04 $ 24 36 D 44 68 d 64 100
ENO 05 05 % 25 37 E 45 69 e 65 101
ACK 06 06 & 26 38 F 46 70 f 66 102
BEL 07 07 27 39 G 47 71 g 67 103
BS 08 08 (28 40 H 48 72 h 68 104
HT 09 09) 29 41 I 49 73 i 69 105
.F OA 10 * 2A 42 J 4A 74 j 6A 106

VT 08 11 + 28 43 K 48 75 k 68 107
FF 0C 12 2C 44 L 4C 76 I 6C 108
CR 00 13 20 45 M 40 77 m 6D 109
SM OE 14 2E 46 N 4E 78 n 6E 110
SI OF 15 / 2F 47 0 4F 79 o 6F 111
DLE 10 16 0 30 48 P 50 80 p 70 112
DC1 11 17 1 31 49 a 51 81 q 71 113
DC2 12 18 2 32 50 R 52 82 r 72 114
DC3 13 19 3 33 51 S 53 83 s 73 115
DC4 14 20 4 34 52 T 54 84 t 74 116
NAK 15 21 5 35 53 U 55 85 u 75 117
SYN 16 22 6 36 54 V 56 86 v 76 118
ETS 17 23 7 37 55 W 57 87 w 77 119
CAN 18 24 8 38 56 X 58 88 x 78 120
EM 19 25 9 39 57 Y 59 89 y 79 121
SUB 1A 26 3A 58 Z SA 90 z 7A 122
ESC 1B 27 38 59 [58 91 { 7B 123
FS 1C 28 < 30 60 \ 5C 92 I 7C 124
GS ID 29 - 30 61 5 5D 93 } 70 125
RS 1E 30 • 3E 62 A SE 94 - 7E 126
US 1F 31 . 3F 63 5F 95 DEL 7F 127

(RB)

A-35

ASCII Chart

APPENDIX M: FORTH VOCABULARY WORDS

CONVERT KEY SORT
CODE COUNT LAST STATE

COUNTER LEAVE SWAP
> <aR LINK>BODY TCALL

#OUT o CREATE LIST THEN
#S - D+ LITERAL TIB
#TIB >D LOAD TIMER
$ >BODY DEBUG LOOP TURNKEY

>IN DECIMAL LEXT TYPE
>R DEFINITIONS MACH U.
?DUP DEPTH MAKEMODULE Lk
?FREE DISK MAKECMODULE UM°
?INCLUDE* DNEGATE MATH UM/MOD

"*/MOD ?TERMINAL DO MAX UNTIL
+ @ DOES> MIN UPDATE
÷ ABORT DROP MOO VALLOT
+> ABORr DUMP NEGATE VARIABLE
+LOOP ABORTVECTOR DUP NOT VERBOSE

ABS ELSE NP VERIFY
AGAIN EMIT NUMBER? VOCABULARY

-> ALLOT EMPTY OF VP
-TRAILING ALSO EMPTY-BUFFERS ONLY W!

AND END-CODE OR W,
ASCII ENDCASE ORDER W@
ASSEMBLER ENDOF OS-9 WHILE

.R ASSIGNMODULE EXECUTE OVER WORD

.S BASE EXIT PAD WORDS
/ BEGIN EXPECT PICK WEXT
/MOO BINARY FILL QUERY XOR
0< BLK FIND QUIT
0, BLOCK FLUSH R> 0]
0> BODY>LINK FORGET R@ [COMPILE]
1+ BUFFER FORTH RECURSIVE
I- BYE FORTH-83 REPEAT
2" C! HERE ROLL A

2+ C. HEX ROT (
2- C@ HOLD SAVE-BUFFERS
2/ CASE I SEAL
2DROP CMOVE I' SIGN
2DUP CMOVE> IF SMUDGE
2OVER CODE IMMEDIATE SPACE
2SWAP COMPILE INCLUDE* SPACES

CONSTANT J SPAN

A-36

Alphabetical Listing of FORTH Vocabulary Words

0

. APPENDIX N: MACH2 EDITION 2 INFORMATION

This appendix documents the differences between Mach2 Edition #1 and
Mach2 Edition #2 for OS-9 version 2.0.

The topics covered are:

New Math Module Support
High Level Driver Creation Supported
Number Base Specification Extended
68020 Long PC-Relative BSR's Supported
Module Name Change
Module Header Information Change

New Math Module Support

The Math1 and Math2 modules found in OS-9 version 1.2 have been combined into one module,
Math, under OS-9 version 2.0. In Mach2 Edition #2, this single math module is supported
via TRAP 15. TRAP 14, which was previously used to access the Mathi module, is now available.

High Level Driver Creation Support Added

Mach2 now contains support for the high level creation of OS-9 device drivers. Any Forth word
which does not reference the Mach2 kernel may be used in the driver. To check for invalid driver
words, store a .1 in VERBOSE and load your driver code. Any invalid kernel references will be
flagged during compilation.

An example Sequential Character File (SCF) device driver will be available in the near future.

MAKEDRIVER

The word MAKEDRIVER is used to turn your loaded code into a proper OS-9 driver module.
MAKEDRIVER is passed the number of bytes of variable space required by the driver and the
start and end address of the driver code in memory. The name for the driver module should follow
MAKEDRIVER:

<#varbytes> <startaddress> <endaddress> MAKEDRIVER <drivemame>

A-37

Mach2 Edition 2 Information

0

Required driver routines.

Your device driver code must contain the following seven routines:

INIT - Initialize device.
READ - Read a character.
WRITE - Write a character.
GETSTA - Get device status.
SETSTA - Set device status.
TERM - Terminate device.
EXCEPTION - Handles illegal exception.

The functions of these seven routines are described in the OS-9 68000 Operating System
Technical Manual. When MAKEDRIVER is executed, it will check for the existence of these
seven words. If they are not all present, MAKEDRIVER will present an error message and
abort execution.

Driver variables.

To define a driver variable, use the word DRVRVar as follows:

#16 DRVRVar CharWidth

The base address of the driver variable area is kept in the A2 register. The variable storage area
for CharWidth would be located 16 bytes into the driver variable area (#16(A2)). Driver variable
references are compiled as offsets from the A2 register.

Number Base Specification Extended

By preceeding numbers with the characters, (# $ %) the current BASE of the compiler can
be overidden.

DECIMAL #
HEX $
BINARY -%

Examples:
$12 = 18 Decimal
%10 a 5 Decimal
#10 - 10 Decimal

A-38

Mach2 Edition 2 Information

0

68020 Long PC-Relative BSR's Supported

The Mach2 compiler now supports the 32-bit displacement version of the 68020's PC-relative
BSR instruction. Execution of the word MC68020 will set the compiler switch which tells the
compiler to use 68020 32-bit BSR instructions it necessary. If MC68020 has been executed,
and a Forth word references another word which is further than 32K bytes away, the Mach2
compiler will automatically generate the 6 byte 68020 BSR.L instruction ($61 FF).

Module Name Change

The main module in the Mach2 file, which used to be called MACH. is now called MACH2.

Module Header Information Fixed

The permission and owner information in the Mach2 module header is now compatible with
OS-9 version 2.0.

A-39

Appendix N: Mach2 Edition 2 Information

iNDEX

$CLOSE 61,G-211 C
$CREATE 59,G-211 compiler, 05-9
$DELETE 61,G-211 C example 89-91
$OPEN 60,G-211
$WRITE 62.G-211 parameter passing conventions 87
.ALIGN G-217 register variables 91
?FREE 23 strings G-3
?OS9ERROR 60,64,G-212 see also 'generic format trap module'

case sensitive 5
CODE 37
code space 42,77

A diagram 18

A6 register 21,69,70,77,80,83,A-3 size of 19

ALLOT 18,19 see also 'HERE', 'ALLOT'
ALSO 24-25 comments

assembler 36-44 in assembler 39

comments 39 may be nested G-12

data storage allocation 41 single line G-207

directives 41,G-217,G-218 CONSTANT 41

examples 15, CREATE 19

infix 15
inline math 40
interactive 36 D
local Labels 39 dat". area 22,42,66,69,70,77,A-3
oatos 44 data pointer see 'data area'operators 40 DC 42,13-217
psuedo-instructions 38,39,42 DCB 43
symbols 41

ASSIGNMODULE 79. DEBUG 46

assembly language definition 81 debugger 46-51
attributes see tiles' commands 48-51

disla 47
examples 16
invoking the debugger 46B trap module usage 78

benchmark see 'Sieve' warning 47,G-108
DEFINITIONS 25
device drivers 76,85
dictionary 24

removing words from 25

dictionary header see 'header'

A-40

Index

0

. INDEX

directives, assembler FILEID G-77,G-136.G-189,G-212
DS 41 files 59-63
EQU 41 access mode 59,61

disassembler 45,50 attributes 59
examples 16 closing 61
uses trap module 45,78 creating 59

DS 41,G-218 currentfile G-77
deleting 61
errors G-99

E FORTH file handling words 59
loading 15,G-74

echo 57 opening 60
EMPTY 26 OS-9 file handling words 59

diagram 25 path number 60,61
END-CODE 37 writing to 62
EQU 41,G-218 FILL 62
error handling 64-65 floating point 14,30-31

exception errors see 'exception handling' floating point stack 30,88,A-3
MACH2 error messages A-1 0-A-1I mode 31, see also 'FP', 'INT
OS-9 error codes A-32-A-34 vocabulary words G-213-G-216
OS-9errorformat 64 FP 31

ERRORPATH 64,G-212 FORGET 26
exception handling 66-68 diagrarn 25

exception errors 66 FORTH
exception table (68000) 66 words, alphabetical A-35
exception table (OS-9) 67 FORTH-83 see 'standards'
installing exception handling routines 68

EXPECT 55
G

F 'generic' format trap module 83-92
C calling example 89

F$Exit may be call from other languages 83
F$Fork G-9 parameter passing 86
F$lcpt 69,70 required stack size 87
F$1D 72 returning results 87
F$PErr 64-65 selector 86
F$RTE 69 stack notation 84
F$Send 72
F$STrap 68
F$TLink 82,90
F$Wait G-9

A-41

Index

INDEX

H local variables 12,27-28
example 27 .

HEADER G.217,G-218 opertors 28
header 18-20 register usage A-3

diagram A-2 stack notation 29
see also 'names space' loop stack A-4,A-5

HERE 18,19 in 'generic' trap module 88

I$GetStt 56 'MACH' format trap module 77-82
I$Read 54,55,63 assigning trap numbers 78
I$ReadLn 54,55 calirrg the trap module 79
I$SetStt 56 inihalizationof 80
I$Wrfte 54 reading into memory 81
I EWritLn 54 selector 77,79
IMMEDIATE 44 stack notation 78
INT 31 see ais trap module'
interrupt keys 54,55 Mach.bit 44

MACH2.
register usage A-3

J Sta.tng up 4
MACHMOOULE 77

JSR 37,44,51,77,80,G-128,A-6 exan" G-178
see also 'subroutine threading' macro v'.-bstitutlon 44,A-7,A-8

jump table 77,G-128 MAKEMODULE 84
diagram 21 example 85 0

Memory.
availability 12,23

K display 49
requirements 4

KEY 55 .utilikword see '?FREE'

see also 'code space', 'names space',
Md Variable space'

L mnemonics 45
modules see also 'trap modules'

LABEL 41,G-218 disassembler module 45
line editing 54 executable see TURNKEY',
link field G-76,A-2 'MACHMODULE', MAKEMODULE'
LIST (OS-9 command) 62 math modules 30

MOVEM discussion 80

A-42

Index

0

. INDEX

N psuedo-instructions
DC 42

named input parameters see 'local variables' DrB 43
names space 'OS9- 38,39,44

diagram 20 .TCALL 43
size o 20
see also "NP". .

NP 20 R

Random Block File Manager 54,59
o recursion W8

see also"local variables'
ONLY 24 " " re~gister usage A-3

exarle 25 •- relocatable 32
ORDER 26 RESPONSE 69,G-212
OS-9/68000 Technical Manuals 1" IS 7;44,G-208

revision 2 -

error codes A-32-A-34
error message tile 65 " ' SEAL 2 5
errors 38,64-65 1 drEA_ 26 -

J/O system cas A-24-A-28 sedrhiroer 2.4

shell 49,73,77,84 25.
system mode system calls A-29-A-31 'iftilki 26
user mode system calls A-12-A-23 select~r see trap modules'

OS9 G-218 Isill-rnodifying code 47
see also 'psuedo-instructions' -Sequentla• Character File Manager 54

signals -69-72
P signal intercept routine 69

paraete stck 58,2,51'SMUDGE 44
parameter stack 5295 exception vector 38,44,45,66,81,G-70

in 'generic trap module 88u le 78
register usage A-3 see also 'exception handling'

PARAMPTR 73,G-212 SPAN-55
PC-relative 32,44 stack notation 29
position-independent 32
precedence (of arithmetic operators) 40
process id 72
process parameter passing 73-75
processes 69,72,73

Chilu G-9

A-43

Index

INDEX

stacks U
32-bits wide 10,29
depth indicator 5 user trap handler modules see 'rap modules'

floating point stack see floating oint, utility commands 13

loop stack see loop stack'
notation see 'stack notation'
parameter stack see 'parameter stack' V
subroutine stack see 'subroutine stac ae

Standard variable s 42,77

32-bit FORTH-83 29,G4151 a 21ocatingvarable space 22
FORTn+79 10 dag~wn 21
FORTH-83 10,59 iocatedreative to A6 21

status register 51 size of 21,22
subroaulne stack see also VP', VALLOr, 'VARIABLE'

in 'gene~trap module 88 variables

registe usage A-3 arreq *_ 22

subroutine threading ways 22
cei * 22

Support examples. 22
Mai I see also VARIABLE', VALLOT'

RoundTable iii VERBOSE 33
Telephone Wi fl~ag • MAKEMOOULE words 84

vocabularies 24-26
aqpobn 26
Tcreft 26Tdiagram 25

task 69 search aodr. 24
TCALL 43,79,82 trM*ien- 25

assembly IMarw def iftion 79 VOCABULARY 26
terminal device 54-58 VP 21-23

ciaracluristics 56
echo 57

TMOOE 56 W
transient vocabulary 25
trap modules 77-92 WORDS 26

stac notation 77
see allo UACH format trap module',

ogewW, format Wap module' X
TURNKEY 14,32-33,73

abort considerations 33 XMOOE 56

can't use compiler words 33
example 74-75.0-iUR

A-44

Index

IND.EX

sk U
3Zt• • .-, 1OS ,• ucelres gwK im p rnv,~ies'
326 %I*. I

umvw.? 1o W to cl 2 -oI ndl

ftmkN"W p$kU0II* pow. ~~ ~lW~1

p m w= ,4 $l a w m i sMw VMm 4 2 .7 7
Standard

32b OT-32,-5 acWOCWg vwlabbp. 22
FORM749 10 downra 21
FORTH-83 10,%9 iocaw.ndw" to AS 21

status rgister 51 s$i1o2 d-21.22
subroutine st si ao wVP, vALLO", 'VARIABLE'

in 'gen*Wctrapr module 88 vada-ki.
mgislor usage A-3 acelft 2;

subrOutine threading arays
Ssupport exanftl.G 3 22

MA a see~aws "V AI A LE', 'VALLO 'IROMT~tle m VERBOSE 33V

flags ApW MAKN(MQULE words 84Telephone Ci c, 24-2
app=pl:ilon 26,:
cr**n. 26T dip 4V,

WPf25'

TCALL 43,79,82 ASiu 25. *
,maml W "Initon 79 VO.ABULARY 26

tminad 4- VP 21-,.

echo 5"7
"1)J0E 68 W.
tanw voblary 25 WORDS. 26
tra mou,".d,77-92 -

stmo n(oaton 77
804 aw ¶4ACH "M mirpduW,

TURNKEY 14,32.33,735
bonconsk id omh3tio 3MOE 56

can' use coniler words 33
exan 74I5

A-44

SII I I . . I I J I _

